Routing в роутере что это

На чтение 12 мин Просмотров 1.5к.

Максим aka WisH

Максим aka WisH

Высшее образование по специальности «Информационные системы». Опыт работы системным администратором — 5 лет.

Задать вопрос

Сегодня поговорим о том, что такое таблица маршрутизации, зачем она нужна и на каких устройствах применяется. В большинстве случаев, обычные люди не пользуются ей, отдавая маршрутизацию на откуп автоматике. Маршрутизаторы и другое сетевое оборудование умеют самостоятельно составлять таблицы, и не всегда хорошей идеей является вмешательство в этот процесс.

Содержание

  1. Как работает таблица маршрутизации
  2. Зачем нужна таблица
  3. Содержание записей
  4. Виды таблицы
  5. Команды для работы с таблицей маршрутизации
  6. В Windows
  7. В Linux
  8. Заключение

Как работает таблица маршрутизации

Перед тем, как приступать к настройке таблиц на роутере или на компьютере, вам нужно понимать, как они работают и для чего могут пригодиться. При настройке каких-то компьютерных систем лучше всегда соблюдать правило: если есть автоматическая настройка или предустановленные параметры, то не лезьте в этот раздел, если хоть чего-то не понимаете.

Не стоит настраивать маршрутизацию в маленьких сетях или если есть сомнения, что сможете справиться самостоятельно.

Если у вас есть небольшая домашняя сеть, то смысла в самостоятельной настройке нет. Разве что, ваше устройство не поддерживает автоматическое составление таблицы и её обязательно придется заносить вручную. Такое может случиться, если было куплено профессиональное оборудование или же, если это оборудование старое. В таких случаях действительно придется разбираться с таблицами самостоятельно.

Зачем нужна таблица

Таблица маршрутизации нужна, чтобы компьютер или маршрутизатор знали, куда нужно отправлять пакеты с информацией. Не всегда сеть организована таким образом, что после маршрутизатора сразу находятся конечные абоненты. Иногда идет сначала один маршрутизатор, потом другой, потом стоит какой-то сервер и уже за ним прячутся остальные компьютеры и устройства.

Если такая цепочка одна, то с доставкой данных нет проблем, если же это большая сеть, в которой много переходов и абонентов, то доставка информации может задерживаться. В таких случаях и составляются таблицы маршрутизации, чтобы облегчить работу всей сети. При правильно составленной таблице каждое устройство знает куда передавать пакет информации дальше.

Проще всего вам будет представить необходимость этих таблиц на примере почты и адресов. Представьте, что письмо, предназначенное вам, оказалось в главном распределительном центре Почты России. Они смотрят на него и видят, кому оно предназначается: Иванов И.И.. После этого они смотрят в свои гроссбухи с адресами и находят, что Иванов И.И. живет в Энской Губернии и переправляют письмо в почтамт этой губернии.

отправления в реальности

Передача отправления.

Дальше уже там смотрят в свои таблицы и видят, что такой абонент проживает в городе Бердичеве и переправляют туда, там находят, что к этому абоненту относится отделение почты №666 и переправляют письмо туда. Там уже находят конкретный адрес, улица Маршрутная, дом такой-то, и посылают почтальона, ответственного за этот дом, с отправлением для доставки вашего письма в почтовый ящик.

Как-то так и работают таблицы маршрутизации, пример с почтой тут отличается только тем, что там сразу написан весь адрес проживания и, фактически, весь маршрут: Энская губерния, г. Бердичев, улица Маршрутная, дом такой-то, Иванов И.И. В обоих случаях конечный получатель идентифицируется однозначно и точно. Из-за этого все отделения знают куда и как передавать отправления, а могут иметь и несколько маршрутов для доставки.

Содержание записей

Поля таблицы как раз зависят от того, что должен знать этот узел маршрута для дальнейшего получения и передачи информации. Самым важным здесь являются IP-адреса других узлов сети, а также те адреса, о существовании которых точно знает это устройство. Также важным показателем является метрика, отвечающая за длину маршрута.

таблица маршрутизации в примере

Пример таблицы маршрутизации с 4 интерфейсами и возвратом сигнала.

В общем случае поля таблицы выглядят следующим образом:

  • Адрес сети или узла назначения. Также здесь может стоять маршрут по умолчанию.
  • Маска сети назначения (для IPv4-сетей маска /32 (255.255.255.255)). С помощью маски указывается единичный адрес или же некоторый диапазон адресов.
  • Шлюз, обозначающий адрес маршрутизатора в сети. В случае, если устройство в своей подсети не имеет подобного адреса, то он передает пакет следующему маршрутизатору, в ведении которого и находится отправитель.
  • Интерфейс, через который доступен шлюз. Для разных устройств это могут быть разные данные. Например, в случае обычного маршрутизатора это будут номера портов: 0,1,2,3 и так далее. В случае с компьютером это будет сетевая карта или одна из сетевых карт, если их несколько.
  • Метрику — числовой показатель, задающий предпочтительность маршрута. Зависит от настроек, обычно здесь имеется в виду длина маршрута, то есть, количество узлов до абонента. Если есть маршрут с двумя узлами и с 12, то выбран будет маршрут с наименьшей метрикой. Также можно задавать метрику в зависимости от скорости соединения и еще нескольких параметров.

Записи на разных устройствах могут немного отличаться по внешнему виду, но поля остаются такими же в большинстве случаев. В них содержится та информация, без которой доставка пакета, просмотр маршрута, а также его выбор при доставке сообщения будут затруднены. Меньше информации добавить не получится, иначе её будет недостаточно.

Виды таблицы

Есть различия по способу формирования таблицы на устройстве. Всего есть два вида таблиц: статические и динамические. Если ничего не настраивали, а интернет как-то работает, то используется второй вид таблиц. Сейчас разберем подробнее каждый из этих видов, их преимущества и недостатки.

Статические таблицы стоит снова сравнить с почтой. Есть определенный человек, проживающий по определенному адресу. В случае переезда человека, сноса дома или строительства нового дома, нужно подать правильно оформленные документы, чтобы новые абоненты смогли получать почту. Если не сделали этого вовремя, то сами виноваты.

статическая таблица в реальности

Телефонный справочник, как пример статической таблицы.

Со статическими таблицами также: что вы в них запишите, то там и будет. Если абонент пропадет или переедет, то пакеты для него будут высылаться по старому маршруту, пока данные не будут изменены. При подключении нового узла сети или оборудования также вносят изменения в таблицы, иначе, несмотря на работающую связь, никакого обмена сообщениями между ними не будет.

Статическая таблицы маршрутизация не зависит от местоположения роутера. Не стирается при перезагрузке или установке в другое место.

С динамическими таблицами все сложнее для оборудования и проще для человека. В случае с динамическими таблицами, их составляет сам маршрутизатор или сервер. Фактическое, каждое устройство, работающее по протоку TCP, после подключения посылает в сеть сообщение типа «Привет! Я здесь новенькой. Мой адрес и имя такие-то, готов получать и отправлять информацию». Когда это сообщение доходит до первого маршрутизатора, он добавляет этот узел в свою сеть.

При первом подключении сервера или маршрутизатора он также отправляет подобный запрос, только еще и сам говорит, что будет передавать информацию дальше. Отправляет пакеты с запросом ко всем устройствам, чтобы получить их адреса и данные, а также запросы к другим роутерам, чтобы получить их таблицы и заняться просмотром маршрутов.

пример динамической маршрутизации

Динамическая маршрутизация.

Маршрутизаторы часто обмениваются информацией, например один из первых и сейчас почти неиспользуемых в крупных сетях, протокол RIP заставлял свитчи раз в 30 секунд отправлять в сеть всю свою таблицу маршрутизации. Это позволяло держать данные актуальными на всех устройствах, но нагружало есть.

В случае динамических таблиц, периодически проводится их очистка. Это позволяет избежать накопления ненужных записей и недостоверной информации. Так что, если какое-то устройство отключается и больше не присутствует в сети, то через некоторое время оно вычеркивается из таблиц. Также, если роутер был выключен, то после включения он станет с нуля создавать таблицу, а вот статическая таблица загрузится и начнет работать сразу.

Команды для работы с таблицей маршрутизации

На разном оборудовании есть разные команды для работы с таблицами маршрутизации. Например, до оборудования компании Cisco допускаются только сертифицированные сотрудники. Они должны пройти обучение и получить сертификат у самого разработчика. Можно работать и без всего этого, но тогда разработчик не отвечает за нанесенный ущерб.

моделирование сети в работе cisco

Программа для моделирования работы сетей Cisco.

На других системах таких строгих требований нет, так что приведем примеры команд для основных операционных систем. Если же захотите настроить маршрутизацию на каком-то другом оборудовании, то для поиска команд загляните в инструкцию.

В Windows

В этой операционной системе используется команда route с разными модификаторами для работы с маршрутизацией. Вводится в командной строке Windows, открытой от имени администратора.

таблица маршрутизации в виндовс

Синтаксис команды.
Параметр Использование
-f Используйте для очистки таблицы маршрутизации, если хотите избавится от всего, что там наворотили.
-p Превращает запись в постоянную. Делает запись статической. После перезагрузки компьютера она останется в памяти таблицы маршрутизации, а без этого параметры после перезагрузки запись сотрется.
add Добавляет новую запись в таблицу. Без параметра –p запись будет динамической.
change Позволяет изменить указанную запись.
delete Удаляет указанную запись.
print Показывает на экране всю таблицу маршрутизации со всеми активными записями.
destination Позволяет установить идентификатор сети назначения при создании или изменении записи.
mask Напишите для указания маски сети назначения.
gateway Указывайте шлюз. Если нужно строить маршрут до следующего маршрутизатора, то используйте его.
metric Указывайте метрику для маршрута. От 1 до 999, чем меньше метрика, тем активнее станет использоваться маршрут.
if Укажите номер интерфейса.

Приведем несколько примеров использования команды:

  • Показать текущие записи в таблице: route print
  • Показать все маршруты к подсети: 192.17.x.x: route print 192.17.x.x
  • Добавление новой записи с маршрутом для всех неизвестных подсетей при использовании шлюза по адресу 192.17.77.1: route -p add 0.0.0.0 mask 0.0.0.0 192.17.77.1
  • Добавление записи маршрута для сети 102.25.98.0 через узел сети 102.25.90.1: route -p add 102.25.98.0 mask 255.255.255.0 102.25.90.1
  • Удаление записи из таблицы: route delete 172.16.12.0 mask 255.255.0.0

В Linux

В linux для редактирования таблицы маршрутизации также придется использовать консоль. Есть два набора команд:

  • Route. Устаревший набор команд, который до сих пор поддерживается всеми версиями систем, но обладает меньшим функционалом.
  • IP Route. Имеет больший функционал, должен постепенно вывести прошлый инструмент из употребления. Будем разбирать его.

Откройте терминал и введите в нем «ip route», чтобы отобразить текущие записи в таблице.

таблица маршрутизации в линукс

Внешний вид таблицы.

Само построение команды выглядит как на представленной картинке. Если вам захочется применить её, то каждый из указанных пунктов замените на тот, что используется у вас в сети. Основные обозначения:

  • [destination] – укажите адрес сети, подсети или конечного узла маршрута.
  • [MASK netmask] – маска подсети.
  • [gateway] – укажите адрес шлюза, через который будет идти обращение к другой сети.
  • [METRIC metric] – задайте метрику, если устройство является маршрутизатором. Чем меньше число в метрике, тем чаще будет использоваться маршрут.
  • [IF interface] – укажите интерфейс(порт), через который пойдет обмен информацией.

пример структуры команды для таблицы маршрутизации в линукс

Структура команды.

Расшифровка некоторых фраз, которые остаются могут показаться непонятными при использовании команды:

  • via – читайте как «через», используется для указания шлюза или промежуточного узла.
  • dev – используется для обозначения сетевого интерфейса.
  • netmask – так называется маска подсети.
  • metric – метрика.

При использовании самой команды могут использоваться следующие модификаторы:

  • add – добавление записи в таблицу.
  • del – удаление записи из таблицы.
  • replace – замена одного маршрута другим, а не изменение готового маршрута.
  • change – изменение одной из записей.

Приведем несколько примеров использования команды. На их основе можно построить то, что подойдет именно к вашему случаю:

  • Ip route add -net 192.16.25.0/24 via 192.168.1.1 — для указанной сети устанавливается шлюз 192.168.1.1
  • Ip route del 192.16.25.0/24 via 192.168.1.1 – удаляет записи об установке шлюза для указанной сети.
  • ip route replace 172.16.10.0/24 via 192.168.1.3 – удаляет запись о старом шлюзе и заменяет запись о новом шлюзе для подсети.
  • ip route replace default via 5.215.98.7 – изменение маршрута по умолчанию. Обычно применяется при смене адреса провайдера или при изменении основного маршрутизатора.

Все эти команды изменяют записи в динамической таблице. Чтобы сами записи сохранялись при перезагрузке, их нужно добавить в файл конфигурации. Информацию о том, где именно они хранятся лучше посмотреть в сети или в руководстве к системе. Например, в Red Hat используются конфигурационные файлы из каталога /etc/sysconfig/network-scripts/route-ethX.

Заключение

В статье разобрали для чего используются таблицы маршрутизации, какие они бывают и как работают. Обычно людям ненужно настраивать таблицы маршрутизации в домашних сетях, потому что динамическое построение таблиц в небольших сетях нисколько не тормозит работу устройств. В организациях с несколькими филиалами или с большим количеством конечных устройств маршрутизация может принести пользу.

Само изменение таблицы требуется в редких случаях, когда какое-то устройство не удается правильно обнаружить при его подключении. В этом случае имеет смысл добавить в таблицу статическую запись, чтобы каждый раз не мучатся с подключением устройства. В остальных случаях заниматься самостоятельной маршрутизацией пакетов по сети не стоит.

Маршрутизация работает на сетевом уровне модель взаимодействия открытых систем OSI. Маршрутизация —  это поиск маршрута доставки пакета в крупной составной сети через транзитные узлы, которые называются маршрутизаторы.

Марутшрутизация в компьютерных сетях

Маршрутизация состоит из двух этапов:

  1. На первом этапе происходит изучение сети, какие подсети есть в этой составной сети, какие маршрутизаторы и как эти маршрутизаторы объединены между собой.
  2. Второй этап маршрутизации выполняется когда сеть уже изучена и на маршрутизатор поступил пакет, для этого пакета нужно определить куда именно его отправить. Иногда для второго этапа маршрутизации используется отдельный термин “продвижение” по-английски forwarding.

Этапы маршрутизации

Варианты действий маршрутизатора

В качестве примера, рассмотрим схему составной сети, здесь показаны отдельные подсети, для каждой подсети есть ее адрес и маска, а также маршрутизаторы, которые объединяют эти сети.

Схема маршрутизации пример

Рассмотрим маршрутизатор D, на него пришел пакет, и маршрутизатор должен решить, что ему делать с этим пакетом. Начнем с того, какие вообще возможны варианты действий у маршрутизатора. Первый вариант, сеть которой предназначен пакет подключена непосредственно к маршрутизатору. У маршрутизатора D таких сетей 3, в этом случае маршрутизатор передает пакет непосредственно в эту сеть.

Сети маршрутизатора

Второй вариант, нужная сеть подключена к другому маршрутизатору (А), и известно, какой маршрутизатор нужен. В этом случае, маршрутизатор D передает пакет на следующий маршрутизатор, который может передать пакет в нужную сеть, такой маршрутизатор называется шлюзом.

Передача пакетов у маршрутизаторов

Третий вариант, пришел пакет для сети, маршрут которой не известен, в этом случае маршрутизатор отбрасывает пакет. В этом отличие работы маршрутизатора от коммутатора, коммутатор отправляет кадр который он не знает куда доставить на все порты, маршрутизатор так не делает. В противном случае составная сеть очень быстро может переполнится мусорными пакетами для которых не известен маршрут доставки.

Что нужно знать маршрутизатору для того чтобы решить куда отправить пакет?

  • Во-первых у маршрутизатора есть несколько интерфейсов, к которым подключены сети. Нужно определить в какой из этих интерфейсов отправлять пакет.
  • Затем нужно определить, что именно делать с этим пакетом. Есть 2 варианта, можно передать пакет в сеть (192.168.1.0/24), либо можно передать его на один из маршрутизаторов подключенные к этой сети. Если передавать пакет на маршрутизатор, то нужно знать, какой именно из маршрутизаторов подключенных к этой сети, выбрать для передачи пакета.

Знать какой маршрутизатор выбрать

Таблица маршрутизации

Эту информацию маршрутизатор хранит в таблице маршрутизации. На картинке ниже показан ее упрощенный вид, в которой некоторые служебные столбцы удалены для простоты понимания.

Таблица маршрутизации

Первые два столбца это адрес и маска подсети, вместе они задают адрес подсети. Затем столбцы шлюз, интерфейс и метрика. Столбец интерфейс говорит о том, через какой интерфейс маршрутизатора нам нужно отправить пакет.

Таблица маршрутизации Windows

Продолжим рассматривать маршрутизатор D, у него есть три интерфейса. Ниже на картинке представлен вид таблицы маршрутизации для windows, которые в качестве идентификатора интерфейса используют ip-адрес, который назначен этому интерфейсу. Таким образом в столбце интерфейс есть 3 ip-адреса, которые соответствуют трем интерфейсам маршрутизатора.

Интерфейс маршрутизации

Столбец шлюз, говорит что делать с пакетом, который вышел через заданный интерфейс. Для сетей, которые подключены напрямую к маршрутизатору D, в столбце шлюз, указывается «подсоединен», которое говорит о том, что сеть подключена непосредственно к маршрутизатору и передавать пакет нужно напрямую в эту сеть.

Шлюз подсоединен (Маршрутизация)

Если же нам нужно передать пакет на следующий маршрутизатор то в поле шлюз указывается ip-адрес этого маршрутизатора.

Шлюз (Маршрутизация)

Таблица маршрутизации Linux

В операционной системе linux таблица маршрутизации выглядит немного по-другому, основное отличие это идентификатор интерфейсов. В linux вместо ip-адресов используется название интерфейсов. Например, wlan название для беспроводного сетевого интерфейса, а eth0 название для проводного интерфейса по сети ethernet.

Таблица маршрутизации в Linux

Также здесь некоторые столбцы удалены для сокращения (Flags, Ref и Use). В других операционных системах и в сетевом оборудовании вид таблицы маршрутизации может быть несколько другой, но всегда будут обязательны столбцы ip-адрес, маска подсети, шлюз, интерфейс и метрика.

Только следующий шаг!

Часто возникает вопрос, что делать, если сеть для который пришел пакет находится не за одним маршрутизатором? Чтобы в неё попасть, нужно пройти не через один, а через несколько маршрутизаторов, что в этом случае нужно вносить в таблицу маршрутизации.

Следующий шаг в маршрутизации

В таблицу маршрутизации записываем только первый шаг, адрес следующего маршрутизатора, все что находится дальше нас не интересует.

Считаем, что следующий маршрутизатор должен знать правильный маршрут до нужной нам сети, он знает лучше следующий маршрутизатор, тот знает следующий шаг и так далее, пока не доберемся до нужные нам сети.

маршрутизатор знает следующий шаг

Метрика

Можно заметить, что в нашей схеме в одну и ту же сеть, например вот в эту (10.2.0.0/16) можно попасть двумя путями, первый путь проходят через один маршрутизатор F, а второй путь через два маршрутизатора B и E.

2 пути маршрутизации

В этом отличие сетевого уровня от канального. На канальном уровне у нас всегда должно быть только одно соединение, а на сетевом уровне допускаются и даже поощряются для обеспечения надежности несколько путей к одной и той же сети.

Какой путь выбрать? Для этого используются поле метрика таблицы маршрутизации.

Таблица метрика в маршрутизации

Метрика это некоторое число, которые характеризует расстояние от одной сети до другой. Если есть несколько маршрутов до одной и той же сети, то выбирается маршрут с меньшей метрикой.

Метрика в маршрутизации

Раньше, метрика измерялось в количестве маршрутизаторов, таким образом расстояние через маршрутизатор F было бы один, а через маршрутизаторы B и E два.

метрика измерялось в количестве маршрутизаторов

Однако сейчас метрика учитывает не только количество промежуточных маршрутизаторов, но и скорость каналов между сетями, потому что иногда бывает выгоднее пройти через два маршрутизатора, но по более скоростным каналам. Также может учитываться загрузка каналов, поэтому сейчас метрика — это число, которое учитывает все эти характеристики. Мы выбираем маршрут с минимальной метрикой в данном примере выше, будет выбран первый маршрут через маршрутизатор F.

Записи в таблице маршрутизации

Откуда появляются записей в таблице маршрутизации? Есть два варианта статическая маршрутизация и динамическая маршрутизация.

При статической маршрутизации, записи в таблице маршрутизации настраиваются вручную, это удобно делать если у вас сеть небольшая и изменяется редко, но если сеть крупная, то выгоднее использовать динамическую маршрутизацию, в которой маршруты настраиваются автоматически. В этом случае маршрутизаторы сами изучают сеть с помощью протоколов маршрутизации RIP, OSPF, BGP и других.

Преимущество динамической маршрутизации в том, что изменение в сети могут автоматически отмечаться в таблице маршрутизации. Например, если вышел из строя один из маршрутизаторов, то маршрутизаторы по протоколам маршрутизации об этом узнают, и уберут маршрут, который проходит через этот маршрутизатор. С другой стороны, если появился новый маршрутизатор, то это также отразится в таблице маршрутизации автоматически.

Маршрут по умолчанию

Если маршрутизатор не знает куда отправить пакет, то такой пакет отбрасывается. Таким образом получается, что маршрутизатор должен знать маршруты ко всем подсетям в составной сети. На практике для крупных сетей, например для интернета это невозможно, поэтому используются следующие решения.

В таблице маршрутизации назначается специальный маршрутизатор по умолчанию, на которой отправляются все пакеты для неизвестных сетей, как правило это маршрутизатор, который подключен к интернет.

Предполагается что этот маршрутизатор лучше знает структуру сети, и способен найти маршрут в составной сети. Для обозначения маршрута по умолчанию, в таблице маршрутизации используются четыре нуля в адресе подсети и четыре нуля в маске (0.0.0.0, маска 0.0.0.0), а иногда также пишут default.

Ниже пример маршрута по умолчанию в таблице маршрутизации в операционной системе linux.

пример маршрута по умолчанию в таблице маршрутизации в операционной системе linux

Ip-адрес и маска равны нулю, в адрес и шлюз указываются ip-адрес маршрутизатора по умолчанию.

Длина маски подсети

Рассмотрим пример. Маршрутизатор принял пакет на ip-адрес (192.168.100.23), в таблице маршрутизации есть 2 записи (192.168.100.0/24 и 192.168.0.0/16) под который подходит этот ip-адрес, но у них разная длина маски. Какую из этих записей выбрать? Выбирается та запись, где маска длиннее, предполагается, что запись с более длинной маской содержит лучший маршрут интересующей нас сети.

Чтобы понять почему так происходит, давайте рассмотрим составную сеть гипотетического университета. Университет получил блок ip-адресов, разделил этот блок ip-адресов на две части, и каждую часть выделил отдельному кампусу.

Длина маски подсети в маршрутизации

На кампусе находятся свои маршрутизаторы, на которых сеть была дальше разделена на части предназначенные для отдельных факультетов. Разделение сетей производится с помощью увеличения длины маски, весь блок адресов имеет маску / 16, блоки кампусов имеют маску / 17, а блоки факультетов / 18.

Ниже показан фрагмент таблицы маршрутизации на маршрутизаторе первого кампуса. Он содержит путь до сети первого факультета, 2 факультета, до обще университетской сети, который проходит через университетский маршрутизатор, а также маршрут по умолчанию в интернет, который тоже проходит через обще университетский маршрутизатор.

фрагмент таблицы маршрутизации

Предположим, что у на этот маршрутизатор пришел пакет предназначенный для второго факультета, что может сделать маршрутизатор? Он может выбрать запись, которая соответствует второму факультету и отправить непосредственно в сеть этого факультета, либо может выбрать запись, которая соответствует всей университетской сети, тогда отправит на университетский маршрутизатор, что будет явно неправильным.

И так получается, что выбирается всегда маршрут с маской максимальной длины. Общие правила выбора маршрутов следующие.

  • Самая длинная маска 32 — это маршрут конкретному хосту, если в таблице маршрутизации есть такой маршрут, то выбирается он.
  • Затем выполняется поиск маршрута подсети с маской максимальной длины.
  • И только после этого используется маршрут по умолчанию, где маска / 0 под которую подходят все ip-адреса.

Следует отметить, что таблица маршрутизации есть не только у сетевых устройств маршрутизаторов, но и у обычных компьютеров в сети. Хотя у них таблица маршрутизации гораздо меньше.

  • Как правило такая таблица содержит описание присоединенной сети, который подключен данный компьютер.
  • Адрес маршрутизатора по умолчанию (шлюз или gateway) через который, выполняется подключение к интернет, или к корпоративной сети предприятия.
  • А также могут быть дополнительные маршруты к некоторым знакомым сетям, но это необязательно.

Для того чтобы просмотреть таблицу маршрутизации, можно использовать команды route или ip route (route print (Windows); route и ip route (Linux)).

Маршрутизация — поиск маршрута доставки пакета между сетями через транзитные узлы — маршрутизаторы.

Всем привет! Статическая маршрутизация – это по сути специальный выделенный путь, по которому должен пройти пакет информации из пункта А в пункт Б. Напомню, что у нас в сети чаще всего встречаются два устройства: маршрутизаторы и коммутаторы. Напомню, что коммутаторы работают на канальном уровне, а маршрутизаторе на сетевом. Далее я коротко расскажу, про Static Route и как это настроить на домашнем устройстве.

Содержание

  1. Коротко про маршрутизацию
  2. ШАГ 1: Заходим в настройки роутера
  3. ШАГ 2: Настройка
  4. TP-Link
  5. D-Link
  6. ASUS
  7. ZyXEL Keenetic
  8. Netis
  9. Tenda
  10. Задать вопрос автору статьи

Коротко про маршрутизацию

Маршрутизатор, исходя из названия, имеет у себя таблицу маршрутизации, а коммутатор коммутации. Все логично, не правда ли. Но есть небольшая проблема коммутации. Представим, что у нас есть две сети по 250 машин и между ними стоят 2 свича.

Статический маршрут на примере домашних роутеров

Если вы помните в таблице коммутации содержатся MAC-адреса. Да они уникальны, поэтому для работы сети нужно, чтобы каждый свич знал, как минимум 500 таких адресов, что не так мало. И тут встает проблема масштабируемости сети, при добавлении новых машин.

Статический маршрут на примере домашних роутеров

А что если установить вместо коммутаторов маршрутизаторы. В итоге у нас есть две сети:

  • 192.168.1.0/24
  • 192.168.2.0./24

И чтобы пакету добраться из одной сети в другую, нужна одна запись в таблице маршрутизации, а именно о соседнем роутере, который уже в свою очередь знает компьютеры «из своего района». Это и удобно, и экономично в плане хранения нужной информации, так как не нужно хранить таблицу из MAC-адресов всех участников сети.

СОВЕТ! Для большей картины понимания самой темы, советую почитать дополнительные материалы про то, что такое маршрутизатор, коммутатор и про модель OSI.

И тут у нас появляются два понятия:

  • Динамическая маршрутизация – когда при отправке информации через маршрутизатор он в свою очередь сообщает доступность других соседних маршрутизаторов или сетей, и куда можно отправить пакет. Если говорить грубо, то информация идет тем путем, как ему показывают роутеры.
  • Статическая маршрутизация – пакет информации идет определенным путем. Данный маршрут можно прописать вручную.

Далее я расскажу, как вводить эти статические маршруты для использования их в домашних роутерах.

Статический маршрут на примере домашних роутеров

Смотрим на картинку выше. У нас есть второй роутер (router 2), который имеет доступ к интернету (он же является основным шлюзом). У нас есть компьютер (PC), который подключен сначала к коммутатору. Коммутатор подключен к двум роутерам.

Проблема в том, что ПК должен иметь доступ к серверу (172.30.30.1), но при запросе на router 2, у него в таблице маршрутизации нет данных об этих серверах. Теперь давайте попробуем вписать эти настройки в маршрутизатор.

ШАГ 1: Заходим в настройки роутера

Вот мы и перешли непосредственно к настройке статической маршрутизации. Подключаемся к сети интернет-центра через кабель или по Wi-Fi. Далее нужно ввести DNS или IP-адрес роутера в адресную строку любого браузера. Настройку мы будем делать через Web-интерфейс. Подсказка: адрес можно подсмотреть на этикетке под корпусом аппарата. Чаще всего используют адреса:

  • 192.168.1.1
  • 192.168.0.1

Если вы ранее его настраивали, вводим логин и пароль – их также можно подсмотреть на той же самой бумажке. Чаще всего используют комбинации:

  • adminadmin
  • admin – *Пустая строка*

Если есть проблемы со входом в роутер, то смотрим инструкцию тут.

ШАГ 2: Настройка

Напомню, что далее я буду рассматривать конкретный пример, который мы разобрали выше. И на основе этого примера буду вводить свои данные. У вас статические маршруты могут быть другие. Вот какие данные нужно будет ввести (смотрим на схему подключения, чтобы вам было понятно):

  • IP адрес назначения – у нас это IP нашего конкретного сервера, к которому мы хотим пробиться через наш 1-ый роутер (172.30.30.1).
  • Маска подсети – указываем 255.255.255.0.
  • Шлюз – это IP того роутера, который имеет доступ к серверу. В примере это 192.168.0.2 (Второй маршрутизатор).
  • Интерфейс – в некоторых настройках нужно будет указывать еще и его. Если доступ к шлюзу идет через интернет, то указываем WAN. Если же вы подключены к нему через LAN порт (как в нашем примере), то указываем его.

Надеюсь я примерно объяснил, как именно статический маршрут нужно заполнять. Теперь приступим непосредственно к практике. Смотрите главу по своей модели.

TP-Link

Старая прошивка

Слева находим раздел «Дополнительные настройки маршрутизации», и в открывшемся списке нажимаем по пункту «Список статических маршрутов». Нажимаем по кнопке «Добавить».

Статический маршрут на примере домашних роутеров

Вписываем данные.

Статический маршрут на примере домашних роутеров

Новая прошивка

«Дополнительные настройки» – «Сеть» – «Расширенные настройки маршрутизации». Нажимаем по плюсику и вписываем нужную информацию.

Статический маршрут на примере домашних роутеров

D-Link

В классическом светлом интерфейсе нужно перейти в «Дополнительно» и нажать по «Маршрутизации».

Статический маршрут на примере домашних роутеров

В темной прошивке все делается также, только сначала нужно перейти в «Расширенные настройки».

Статический маршрут на примере домашних роутеров

Добавляем правило.

Статический маршрут на примере домашних роутеров

ASUS

Переходим в раздел «Локальная сеть», открываем вкладку «Маршруты» и вписываем наши данные. В конце не забудьте нажать на плюсик, правее таблички и нажать на кнопку «Применить».

Статический маршрут на примере домашних роутеров

ZyXEL Keenetic

Новая прошивка

Переходим на страницу «Маршрутизации» и нажимаем по кнопке добавления правила.

Статический маршрут на примере домашних роутеров

Теперь вводим данные:

Статический маршрут на примере домашних роутеров

  • Тип маршрута – тут нужно указывать тот тип, который вам нужен. Если исходить из задачи, которую указал я, то мы указываем «Маршрут узла».
  • Адрес сети назначения – указываем адрес сервера. В нашем случае это 30.30.1.
  • Маска подсети – 255.255.255.0.
  • Адрес шлюза – адрес роутера, который подключен к нашему серверу. 192.168.0.2.
  • Интерфейс – указываем тот интерфейс, который мы будем использовать для связи. В нашем примере пакеты пойдут локально через LAN порт, поэтому указываем LAN.

Старая прошивка

Нажимаем по значку плакетки в самом низу и переходим на вкладку «Маршруты». Нажимаем по кнопке добавления и вводим нужные вам данные.

Статический маршрут на примере домашних роутеров

Добавление целого списка маршрутов

Кстати тут вы можете загрузить сразу целую таблицу маршрутизации. Для этого выбираем в том же разделе другую кнопку.

Статический маршрут на примере домашних роутеров

Статический маршрут на примере домашних роутеров

Файлик должен иметь расширение типа BAT. И иметь вид как на скрине ниже. Его спокойно можно создать в блокноте.

Статический маршрут на примере домашних роутеров

Вид достаточно простой:

route ADD IP-адрес назначения MASK указываем маску указываем адрес шлюза

Пример:

route ADD 172.30.30.1 MASK 255.255.255.0 192.168.0.2

ПРИМЕЧАНИЕ! Каждый новый адрес должен начинаться с новой строки, а после последнего указанного IP не должен стоять пробел.

Netis

Переходим в раздел «Advanced» (кнопкам в правом верхнем углу) – «Расширенные» – «Статический маршрут.» – вводим каждый пункт и нажимаем по кнопке «Добавить».

Статический маршрут на примере домашних роутеров

Tenda

Нужный нам пункт находится в разделе «Расширенные настройки».

Статический маршрут на примере домашних роутеров

Статический маршрут на примере домашних роутеров

Routers forward packets based on routing tables and forwarding information base (FIB) tables. Each router maintains at least one routing table and one FIB table. Routers select routes based on routing tables and forward packets based on FIB tables.

Routing Table

Each router maintains a local core routing table (namely, an IP routing table), and each routing protocol maintains its own routing table.

  • Local core routing table

    A router uses the local core routing table to store preferred routes. The router then sends the preferred routes to the FIB table to guide packet forwarding. The router selects routes according to the priorities of protocols and costs stored in the routing table.

    A router that supports Layer 3 Virtual Private Network (L3VPN) maintains a local core routing table for each VPN instance.

  • Protocol routing table

    A protocol routing table stores routing information discovered by the protocol.

    A routing protocol can import and advertise routes that are discovered by other routing protocols. For example, if a router running the Open Shortest Path First (OSPF) protocol needs to use OSPF to advertise direct routes, static routes, or Intermediate System-Intermediate System (IS-IS) routes, the router must import the routes into the OSPF routing table.

Routing Table Contents

You can run the display ip routing-table command on a router to view basic information about the routing table of the router. The command output is as follows:

<HUAWEI> display ip routing-table
Proto: Protocol        Pre: Preference
Route Flags: R - relay, D - download to fib, T - to vpn-instance, B - black hole route
------------------------------------------------------------------------------
Routing Table: _public_
         Destinations : 14       Routes : 14                                    
                                                                                
Destination/Mask    Proto   Pre  Cost      Flags NextHop         Interface      
                                                                                
        0.0.0.0/0   Static  60   0          RD   10.137.216.1    Vlanif20
     10.10.10.0/24  Direct  0    0           D   10.10.10.10     Vlanif20
    10.10.10.10/32  Direct  0    0           D   127.0.0.1       InLoopBack0    
   10.10.10.255/32  Direct  0    0           D   127.0.0.1       InLoopBack0    
     10.10.11.0/24  Direct  0    0           D   10.10.11.1      LoopBack0      
     10.10.11.1/32  Direct  0    0           D   127.0.0.1       InLoopBack0    
   10.10.11.255/32  Direct  0    0           D   127.0.0.1       InLoopBack0    
   10.137.216.0/23  Direct  0    0           D   10.137.217.208  Vlanif20      
 10.137.217.208/32  Direct  0    0           D   127.0.0.1       InLoopBack0    
 10.137.217.255/32  Direct  0    0           D   127.0.0.1       InLoopBack0    
      127.0.0.0/8   Direct  0    0           D   127.0.0.1       InLoopBack0    
      127.0.0.1/32  Direct  0    0           D   127.0.0.1       InLoopBack0    
127.255.255.255/32  Direct  0    0           D   127.0.0.1       InLoopBack0    
255.255.255.255/32  Direct  0    0           D   127.0.0.1       InLoopBack0 

A routing table contains the following key data for each IP packet:

  • Destination: identifies the destination IP address or destination network address of an IP packet.

  • Mask: supplements the destination address to specially identify the address of the network segment where the destination host or router resides.

    The network segment address of a destination host or router is obtained through the «AND» operation on the destination address and network mask. For example, if the destination address is 10.1.1.1 and the mask is 255.255.255.0, the address of the network segment where the host or router resides is 10.1.1.0.

    The network mask is composed of several consecutive 1s. These 1s can be expressed in either the dotted decimal notation or the number of consecutive 1s in the mask. For example, the network mask can be expressed either as 255.255.255.0 or 24.

  • Proto: indicates the protocol through which routes are learned.

  • Pre: indicates the routing protocol preference of a route. There may multiple routes to the same destination, which have different next hops and outbound interfaces. These routes may be discovered by different routing protocols or manually configured. A router selects the route with the highest preference (the smallest value) as the optimal route. For the routing protocol preference, see Routing Protocol Preference.

  • Cost: indicates the route cost. When multiple routes to the same destination have the same preference, the route with the lowest cost is selected as the optimal route.

    The Preference value is used to compare the preferences of different routing protocols, while the Cost value is used to compare the preferences of different routes of the same routing protocol.

  • NextHop: indicates the IP address of the next device that an IP packet passes through.

  • Interface: indicates the outbound interface through which an IP packet is forwarded.

In Figure 1-1, the routing table of RouterA shows that it connects to three networks, so it has three IP addresses and three outbound interfaces.

Automatic Restoration After the Number of Routes Exceeds the Upper Limit

A local core routing table stores routes of different routing protocols. If the number of routes in the local core routing table reaches the upper limit, no more route can be added to the table. The local core routing table has the following route limitations:

  • System route limit: specifies the maximum number of routes supported by the system.
  • System route prefix limit: specifies the range of prefixes for all the routes supported by the system.
  • Multicast IGP route limit: specifies the maximum number of multicast IGP routes.
  • Multi-topology route limit: specifies the maximum number of multi-topology routes.
  • Private network route limit: specifies the maximum number of private network routes supported by the system.
  • VPN route limit: specifies the maximum number of VPN routes supported by the system.
  • VPN route prefix limit: specifies the range of prefixes for all the VPN routes supported by the system.

If a protocol fails to add routes to the local core routing table due to a specific route limitation, the system records the failure with the protocol name and routing table ID.

After routes of protocols are deleted from the local core routing table, and the number of routes falls below the upper limit, the system prompts all the protocols that failed to add routes to the local core routing table to re-add the routes to the local core routing table. This process restores most of the routes in the local core routing table. The size of released table space determines whether all routes in the local core routing table can be restored.

Matching with FIB Table

After selecting an optimal route from the routing table, a router sends it to the FIB table. When receives a packet, the router compares it against the FIB table to find the optimal route to forward the packet.

Each entry in the FIB table contains the physical or logical interface through which a packet is sent to a network segment or host to reach the next router. An entry can also indicate whether the packet can be sent to a destination host in a directly connected network.

The router performs the «AND» operation on the destination address in the packet and the network mask of each entry in the FIB table. The router then compares the result of the «AND» operation with the entries in the FIB table to find a match and chooses the optimal route to forward packets according to the longest match rule.

For example, assume that a router has the following routing table:

Routing Tables:
Destination/Mask    Proto  Pre  Cost     Flags NextHop         Interface
 0.0.0.0/0      Static   60   0       D   192.168.0.2      GigabitEthernet1/0/0
 10.8.0.0/16    Static   60   3       D   192.168.0.2      GigabitEthernet1/0/0
 10.9.0.0/16    Static   60   50      D   172.16.0.2       GigabitEthernet3/0/0
 10.9.1.0/24    Static   60   4       D   192.168.0.2      GigabitEthernet2/0/0
 10.20.0.0/16   Direct   0    0       D   172.16.0.1       GigabitEthernet4/0/0

After receiving a packet carrying the destination address 10.9.1.2, the router searches the following FIB table:

 FIB Table:
 Total number of Routes : 5
Destination/Mask   Nexthop         Flag TimeStamp     Interface              TunnelID
0.0.0.0/0            192.168.0.2       SU   t[37]         GigabitEthernet1/0/0  0x0
10.8.0.0/16          192.168.0.2       DU   t[37]         GigabitEthernet1/0/0  0x0
10.9.0.0/16          172.16.0.2        DU   t[9992]       GigabitEthernet3/0/0  0x0
10.9.1.0/24          192.168.0.2       DU   t[9992]       GigabitEthernet2/0/0  0x0
10.20.0.0/16         172.16.0.1        U    t[9992]       GigabitEthernet4/0/0  0x0

The router performs the «AND» operation on the destination address 10.9.1.2 and the masks 0, 16, and 24 to obtain the network segment addresses: 0.0.0.0/0, 10.9.0.0/16, and 10.9.1.0/24. The three addresses match three entries in the FIB table. The router chooses the entry 10.9.1.0/24 according to the longest match rule, and forwards the packet through GigabitEthernet2/0/0.

Всем привет! Спустя продолжительное время возвращаемся к циклу статей. Долгое время мы разбирали мир коммутации и узнали о нем много интересного. Теперь пришло время подняться чуть повыше и взглянуть на сторону маршрутизации. В данной статье поговорим о том, зачем нужна маршрутизация, разберем отличие статической от динамической маршрутизации, виды протоколов и их отличие. Тема очень интересная, поэтому приглашаю всех-всех к прочтению.

В предыдущих статьях мы разбирали отличия сетевых устройств. А именно, чем коммутатор отличается от маршрутизатора (можно почитать здесь и здесь). То есть коммутатор в классическом понимании — это устройство, которое получает Ethernet-кадры на одном интерфейсе и передает эти кадры на другие интерфейсы, базируясь на заголовках и своей таблицы коммутации. Работает коммутатор канальном уровне.
Маршрутизаторы работают аналогично. Только оперируют IP-пакетами. И работают на сетевом уровне. Хочу заметить, что есть коммутаторы и маршрутизаторы, которые работают и на более высоких уровнях, но мы сейчас говорим о классических устройствах.
Встает вопрос. Почему мы не можем просто коммутировать весь трафик? И зачем требуются IP-адреса и маршрутизация. Ведь что MAC-адреса, что IP-адреса уникальны у каждого сетевого устройства (ПК, телефон, сервер и т.д.). Сейчас отвечу более развернуто.

На рисунке представлены 2 коммутатора, к которым подключено по 250 пользователей. Соответственно, чтобы обеспечить связность между всеми участниками, коммутаторы должны знать MAC-адреса всех участников сети. То есть таблица каждого коммутатора будет содержать 500 записей. Это уже не мало.
А если представить, что таким образом будет работать Интернет, в котором миллиарды устройств? Следовательно нужно искать выход. Проблема коммутации заключается в том, что она плохо масштабируется. И тяжело соблюдать иерархию.
Теперь посмотрим на эту ситуацию с точки зрения маршрутизации.

Здесь вводится понятие IP-адресации. Слева сеть 192.168.1.0/24 соединенная с левым маршрутизатором (R1), а справа сеть 192.168.2.0/24 соединенная с правым маршрутизатором (R2), соответственно. R1 знает, что добраться до сети 192.168.2.0 можно через соседа R2 и наоборот R2 знает, что добраться до сети 192.168.1.0 можно через соседа R1. Тем самым 500 записей в таблице коммутации заменяются одной в таблице маршрутизации. Во-первых это удобно, а во-вторых экономит ресурсы. Вдобавок к этому, можно соблюдать иерархичность, при построении.
Теперь поговорим о том, как таблица маршрутизации заполняется. Как только маршрутизатор включается «с коробки», он создает таблицу маршрутизации. Но самостоятельно он туда может записать только информацию о сетях, с которыми он связан напрямую (connected).
Покажу на примере в CPT:

Добавляю маршрутизатор с пустой конфигурацией. Дожидаюсь загрузки и смотрю таблицу маршрутизации:

Router#show ip route 
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route

Gateway of last resort is not set

Сейчас таблица есть, но она пустая из-за того, что не подключен ни один из интерфейсов и не заданы IP-адреса. Соберем схему.

Зададим IP-адресах на интерфейсах маршрутизатора:

Router>enable 
Router#conf t
Enter configuration commands, one per line.  End with CNTL/Z.
Router(config)#interface fastEthernet 0/0
Router(config-if)#ip address 192.168.1.1 255.255.255.0
Router(config-if)#no shutdown 
Router(config-if)#
%LINK-5-CHANGED: Interface FastEthernet0/0, changed state to up

%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up

Router(config-if)#exit
Router(config)#interface fastEthernet 0/1
Router(config-if)#ip address 192.168.2.1 255.255.255.0
Router(config-if)#no shutdown 

Router(config-if)#
%LINK-5-CHANGED: Interface FastEthernet0/1, changed state to up

%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1, changed state to up

Router(config-if)#end

И посмотрим, что изменилось в таблице маршрутизации:

Router#show ip route 
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route

Gateway of last resort is not set

C    192.168.1.0/24 is directly connected, FastEthernet0/0
C    192.168.2.0/24 is directly connected, FastEthernet0/1

В таблице появились 2 записи. Маршрутизатор автоматически добавил подсети, в которых находятся его интерфейсы. Сверху есть коды, показывающие каким образом маршрут был добавлен.
Настроим обе рабочие станции и проверим связность:


Packet Tracer PC Command Line 1.0
PC>ping 192.168.2.2

Pinging 192.168.2.2 with 32 bytes of data:

Reply from 192.168.2.2: bytes=32 time=0ms TTL=127
Reply from 192.168.2.2: bytes=32 time=0ms TTL=127
Reply from 192.168.2.2: bytes=32 time=0ms TTL=127
Reply from 192.168.2.2: bytes=32 time=1ms TTL=127

Ping statistics for 192.168.2.2:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 1ms, Average = 0ms

Теперь детально рассмотрим, что происходит с пакетом, когда он попадает на маршрутизатор.

Пакет приходит. Маршрутизатор сразу читает IP-адрес назначения в заголовке и сверяет его со своей таблицей.

Находит совпадение, изменяет TTL и отправляет на нужный интерфейс. Соответственно, когда ответный пакет придет от PC1, он проделает аналогичную операцию.
То есть отличие в том, что маршрутизатор принимает решение исходя из своей таблицы маршрутизации, а коммутатор из таблицы коммутации. Единственное, что важно запомнить: и у коммутатора, и у маршрутизатора есть ARP-таблица. Несмотря на то, что маршрутизатор работает с 3 уровнем по модели OSI и читает заголовки IP-пакетов, он не может игнорировать работу стека и обязан работать на канальном и физическом уровне. В свою ARP-таблицу он записывает соотношения MAC-адреса к IP-адресу и с какого интерфейса к нему можно добраться. Причем ARP-таблица у каждого сетевого устройства своя. Пишу команду show arp на маршрутизаторе:

Router#show arp 
Protocol  Address          Age (min)  Hardware Addr   Type   Interface
Internet  192.168.1.1             -   0060.5C16.3B01  ARPA   FastEthernet0/0
Internet  192.168.1.2             6   00E0.F73D.E561  ARPA   FastEthernet0/0
Internet  192.168.2.1             -   0060.5C16.3B02  ARPA   FastEthernet0/1
Internet  192.168.2.2             7   0002.179D.455A  ARPA   FastEthernet0/1

Как только PC0 отправил ICMP до PC1 и пакет дошел до маршрутизатора, он увидел в заголовках IP-пакета адрес отправителя (PC0) и его MAC-адрес. Он добавляет его в ARP-таблицу. Следующее, что он видит — это IP-адрес получателя. Он не знает, куда отправлять пакет, так как в его ARP-таблице нет записи. Но видит, что адрес получателя из той же сети, что и один из его интерфейсов. Тогда он запускает ARP с этого интерфейса, чтобы получить MAC-адрес запрашиваемого хоста. Как только приходит ответ, он заносит информацию в ARP-таблицу.
Это базовый пример того, как работает маршрутизация. Прикладываю ссылку на скачивание.
Усложним немного схему.

На ней представлены 2 рабочие станции и 3 маршрутизатора. Не буду заострять внимание на том, как прописать IP-адрес на интерфейс, а лишь покажу итоговую конфигурацию:

RT1 (раскрыть)


RT1#show running-config 
Building configuration...

Current configuration : 571 bytes
!
version 12.4
no service timestamps log datetime msec
no service timestamps debug datetime msec
no service password-encryption
!
hostname RT1
!
!
!
!
!
!
!
!
ip cef
no ipv6 cef
!
!
!
!
!
!
!
!
!
!
!
!
spanning-tree mode pvst
!
!
!
!
!
!
interface FastEthernet0/0
 ip address 192.168.1.1 255.255.255.0
 duplex auto
 speed auto
!
interface FastEthernet0/1
 ip address 10.0.1.2 255.255.255.0
 duplex auto
 speed auto
!
interface Vlan1
 no ip address
 shutdown
!
ip classless
!
ip flow-export version 9
!
!
!
!
!
!
!
line con 0
!
line aux 0
!
line vty 0 4
 login
!
!
!
end

RT2 (раскрыть)


RT2#show running-config 
Building configuration...

Current configuration : 568 bytes
!
version 12.4
no service timestamps log datetime msec
no service timestamps debug datetime msec
no service password-encryption
!
hostname RT2
!
!
!
!
!
!
!
!
ip cef
no ipv6 cef
!
!
!
!
!
!
!
!
!
!
!
!
spanning-tree mode pvst
!
!
!
!
!
!
interface FastEthernet0/0
 ip address 10.0.1.1 255.255.255.0
 duplex auto
 speed auto
!
interface FastEthernet0/1
 ip address 10.0.2.1 255.255.255.0
 duplex auto
 speed auto
!
interface Vlan1
 no ip address
 shutdown
!
ip classless
!
ip flow-export version 9
!
!
!
!
!
!
!
line con 0
!
line aux 0
!
line vty 0 4
 login
!
!
!
end

RT3 (раскрыть)


RT3#show running-config 
Building configuration...

Current configuration : 571 bytes
!
version 12.4
no service timestamps log datetime msec
no service timestamps debug datetime msec
no service password-encryption
!
hostname RT3
!
!
!
!
!
!
!
!
ip cef
no ipv6 cef
!
!
!
!
!
!
!
!
!
!
!
!
spanning-tree mode pvst
!
!
!
!
!
!
interface FastEthernet0/0
 ip address 192.168.2.1 255.255.255.0
 duplex auto
 speed auto
!
interface FastEthernet0/1
 ip address 10.0.2.2 255.255.255.0
 duplex auto
 speed auto
!
interface Vlan1
 no ip address
 shutdown
!
ip classless
!
ip flow-export version 9
!
!
!
!
!
!
!
line con 0
!
line aux 0
!
line vty 0 4
 login
!
!
!
end

PC0 (раскрыть)

PC1 (раскрыть)

Все устройства сконфигурированы. Теперь проверим связность между PC0 и PC1:

В консоли PC0 вылезает сообщение о недоступности узла. Но ведь все адреса прописаны и добраться можно. В чем же проблема? Переходим в режим симуляции и копаем глубже:

PC0 формирует ICMP-сообщение. Смотрит на IP-адрес назначения и понимает, что получатель находится в другой сети. Соответственно передать надо своему основному шлюзу, а дальше пускай сам разбирается.

Пакет доходит до RT1. Смотрит в Destination IP и сравнивает со своей таблицей маршрутизации.


RT1#show ip route 
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route

Gateway of last resort is not set

     10.0.0.0/24 is subnetted, 1 subnets
C       10.0.1.0 is directly connected, FastEthernet0/1
C    192.168.1.0/24 is directly connected, FastEthernet0/0

И вуаля. Совпадений нет. А значит RT1 понятия не имеет, что делать с этим пакетом.

Но так просто отбросить его не может, так как надо уведомить того, кто это послал. Он формирует ответный ICMP с сообщением «Host Unreachable».

Как только пакет доходит до PC0, в консоли высвечивается сообщение «Reply from 192.168.1.1: Destination host unreachable.». То есть RT1 (192.168.1.1) говорит о том, что запрашиваемый хост недоступен.
Выход из ситуации следующий: нужно «сказать» сетевому устройству, как добраться до конкретной подсети. Причем это можно сделать вручную или настроить все сетевые устройства так, чтобы они переговаривались между собой. Вот на этом этапе маршрутизация делится на 2 категории:

  • Статическая маршрутизация
  • Динамическая маршрутизация

Начнем со статической. В качестве примера возьмем схему выше и добьемся связности между PC0 и PC1. Так как первые проблемы с маршрутизацией начались у RT1, то перейдем к его настройке:


RT1#conf t
RT1(config)#ip route 192.168.2.0 255.255.255.0 10.0.1.1 

Маршрут прописывается командой ip route. Синтаксис прост: «подсеть» «маска» «адрес следующего устройства».
После можно набрать команду show ip route и посмотреть таблицу маршрутизации:


RT1#show ip route 
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route

Gateway of last resort is not set

     10.0.0.0/24 is subnetted, 1 subnets
C       10.0.1.0 is directly connected, FastEthernet0/1
C    192.168.1.0/24 is directly connected, FastEthernet0/0
S    192.168.2.0/24 [1/0] via 10.0.1.1

Появился статический маршрут (о чем свидетельствует код S слева). Здесь много различных параметров и о них я расскажу чуть позже. Сейчас задача прописать маршруты на всех устройствах. Перехожу к RT2:


RT2(config)#ip route 192.168.1.0 255.255.255.0 10.0.1.2
RT2(config)#ip route 192.168.2.0 255.255.255.0 10.0.2.2
RT2#show ip route 
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route

Gateway of last resort is not set

     10.0.0.0/24 is subnetted, 2 subnets
C       10.0.1.0 is directly connected, FastEthernet0/0
C       10.0.2.0 is directly connected, FastEthernet0/1
S    192.168.1.0/24 [1/0] via 10.0.1.2
S    192.168.2.0/24 [1/0] via 10.0.2.2

Обратите внимание, что маршрут прописан не только в 192.168.2.0/24, но и 192.168.1.0/24. Без обратного маршрута полноценной связности не будет.
Остался RT3:


RT3(config)#ip route 192.168.1.0 255.255.255.0 10.0.2.1
RT3(config)#end
RT3#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route

Gateway of last resort is not set

     10.0.0.0/24 is subnetted, 1 subnets
C       10.0.2.0 is directly connected, FastEthernet0/1
S    192.168.1.0/24 [1/0] via 10.0.2.1
C    192.168.2.0/24 is directly connected, FastEthernet0/0

Маршруты на всех устройствах прописаны, а значит PC0 сможет достучаться до PC1 и наоборот PC1 до PC0. Проверим:

Обратите внимание на то, что первые 3 запроса потерялись по тайм-ауту (не Unreachable). Это так CPT эмулирует работу ARP. По сути эти 3 потерянных пакета — это следствие того, что каждый маршрутизатор по пути запускал ARP-запрос до своего соседа. В итоге после всех работ PC0 успешно пингует PC1. Проверим обратную связь:

И с этой стороны все прекрасно.
Ссылка на скачивание.

Теперь на примере таблицы R3 объясню, что она из себя представляет:


RT3#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route

Gateway of last resort is not set

     10.0.0.0/24 is subnetted, 1 subnets
C       10.0.2.0 is directly connected, FastEthernet0/1
S    192.168.1.0/24 [1/0] via 10.0.2.1
C    192.168.2.0/24 is directly connected, FastEthernet0/0

Коды (они же легенды) показывают, каким методом данный маршрут попал в таблицу. Их тут много и заострять внимание на все нет смысла (так как ныне не используются). Остановимся на двух — C(connected) и S(static).
Как только мы прописываем IP-адрес и активируем интерфейс, подсеть, к которой он принадлежит, автоматически попадает в таблицу маршрутизации. Поэтому справа от этой строки подписано directly connected и интерфейс, привязанный к этой подсети. Тоже самое с подсетью 192.168.2.0/24. А вот со статически заданным адресом чуть по другому. Подсеть 192.168.1.0/24 не напрямую подсоединена к текущему маршрутизатору, а доступна через 10.0.2.1. А вот этот next-hop уже принадлежит к 10.0.2.0/24 (которая напрямую доступна). Таким образом можно добраться до удаленной подсети, через знакомую сеть. Это может показаться немного запутанным, но именно так работает логика маршрутизатора. Тут еще можно заметить, что в строчке со статическим маршрутом присутствует запись [1/0]. Я чуть позже объясню что это, когда будет разбираться динамическая маршрутизация. Просто на фоне ее эти цифры сразу обретут смысл. А сейчас важно просто запомнить, что первое число — это административная дистанция, а второе — метрика.

Теперь перейдем к разделу динамической маршрутизации. Начну сразу с картинки:

И сразу вопрос: В чем сложность этой схемы? На самом деле ни в чем, до того момента, пока не придется это все настраивать. Сейчас мы умеем настраивать статическую маршрутизацию. И за n-ое количество времени поднимем сеть и она будет работать. А теперь несколько но:

  • На одном из маршрутизаторов появилась новая подсеть. Это значит, что нужно на всех маршрутизаторах вручную прописать маршрут до нее.
  • Допустим мы из Router0 ходили до Cloud0 по цепочке 0 -> 1 -> 3 -> 2 -> Cloud0. Теперь внезапно сгорел/умер/украли Router3. Соответственно не было запасного пути и доступ до Cloud0 закрыт. Сеть стоит и компания не может работать. Тут придется подрываться и переписать цепочку по 0 -> 1 -> 4 -> 2 -> Cloud0. То есть нет никакого резерва. Если сеть падает, то без админа ничего не решить. Сеть не может сама перестроиться.
  • Ну и еще один аргумент, почему строить сеть исключительно на статических маршрутах — зло и не практично. Это, конечно, масштабируемость. Практически любая компания рано или поздно растет, расширяется и сетевых узлов становится все больше. А значит, в конечном итоге, сеть со статическими маршрутами начнет превращаться в ад для сетевого инженера.

Вот на помощь как раз приходит динамическая маршрутизация. Она оперирует двумя очень созвучными понятиями, но совершенно разными по смыслу:

  1. Routing protocols (протоколы маршрутизации) — это как раз те протоколы, о которых чуть ниже поговорим. При помощи этих протоколов, роутеры обмениваются маршрутной информацией и строят топологию.
  2. Routed protocols (маршрутизируемые протоколы) — это как раз те протоколы, которые мы маршрутизируем. В данном случае — это IPv4, IPv6.

Протоколы динамической маршрутизации делятся на 2 категории:

  • IGP (interior gateway protocols) — внутренние протоколы маршрутизации (RIP, OSPF, EIGRP). Гости этого выпуска.
  • EGP (external gateway protocols) — внешние протоколы маршрутизации (на сегодня BGP).

Отличий в них много, но самые главные — IGP запускается внутри одной автономной системы (считайте компании), а EGP запускается между автономными системами (то есть это маршрутизация в Интернете. При помощи него автономные системы связываются между собой). Сейчас представитель EGP остался один — это BGP. Я не буду долго на нем останавливаться, так как он выходит за рамки CCNA. Да и по нему лучше делать отдельную статью, чтобы не смешивать и так довольно емкий материал.

Теперь про IGP. Это прозвучит смешно, но и они делятся на несколько категорий:

  • Distance-Vector (дистанционно-векторные)
  • Hybrid or Advanced Distance Vector (гибридные или продвинутые дистанционно-векторные)
  • Link-State (протокол состояния канала)

Начну с дистанционно-векторного. Он, на мой взгляд, самый простой для понимания.
Название ему такое дали не с проста. Дистанция показывает расстояние до точки назначения. Дальностью оперирует такой показатель, как метрика (о чем я упоминал выше). Вектор показывает направление до точки назначения. Это может быть выходной интерфейс, IP-адрес соседа.
Мне этот протокол напоминает дорожный указатель. То есть по какому направлению идти и какое расстояние до точки назначения.
Теперь покажу на практике, как он работает и по ходу детально разберем.

Чтобы не загромождать статью однообразными настройками, я заранее сконфигурировал устройства. А именно прописал IP-адреса и включил интерфейсы. Оставлю под спойлерами настройки:

Router0:

Router0#show running-config
Building configuration...

Current configuration : 622 bytes
!
version 12.4
no service timestamps log datetime msec
no service timestamps debug datetime msec
no service password-encryption
!
hostname Router0
!
!
!
!
!
!
!
!
ip cef
no ipv6 cef
!
!
!
!
!
!
!
!
!
!
!
!
spanning-tree mode pvst
!
!
!
!
!
!
interface Loopback1
ip address 10.1.1.1 255.255.255.0
!
interface FastEthernet0/0
ip address 192.168.1.1 255.255.255.0
duplex auto
speed auto
!
interface FastEthernet0/1
no ip address
duplex auto
speed auto
shutdown
!
interface Vlan1
no ip address
shutdown
!
ip classless
!
ip flow-export version 9
!
!
!
!
!
!
!
line con 0
!
line aux 0
!
line vty 0 4
login
!
!
!
end

Router1:

Router1#show running-config
Building configuration...

Current configuration : 622 bytes
!
version 12.4
no service timestamps log datetime msec
no service timestamps debug datetime msec
no service password-encryption
!
hostname Router1
!
!
!
!
!
!
!
!
ip cef
no ipv6 cef
!
!
!
!
!
!
!
!
!
!
!
!
spanning-tree mode pvst
!
!
!
!
!
!
interface Loopback1
ip address 10.2.2.1 255.255.255.0
!
interface FastEthernet0/0
ip address 192.168.1.2 255.255.255.0
duplex auto
speed auto
!
interface FastEthernet0/1
no ip address
duplex auto
speed auto
shutdown
!
interface Vlan1
no ip address
shutdown
!
ip classless
!
ip flow-export version 9
!
!
!
!
!
!
!
line con 0
!
line aux 0
!
line vty 0 4
login
!
!
!
end

Единственное, что может показаться новым — это Loopback интерфейсы. Он практически не отличается от других интерфейсов, за исключением того, что не представлен физически и к нему ничего нельзя воткнуть. Он программно создан внутри самого устройства. Такой интерфейс есть и на многих ОС, как Windows и Linux-подобных. На примере он используется для того, чтобы не рисовать множество маршрутизаторов со своими подсетями.
Сейчас таблицы маршрутизации выглядят следующим образом:

Router0:

Router0#show ip route 
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route

Gateway of last resort is not set

     10.0.0.0/24 is subnetted, 1 subnets
C       10.1.1.0 is directly connected, Loopback1
C    192.168.1.0/24 is directly connected, FastEthernet0/0

Router1:

Router1#show ip route 
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route

Gateway of last resort is not set

     10.0.0.0/24 is subnetted, 1 subnets
C       10.2.2.0 is directly connected, Loopback1
C    192.168.1.0/24 is directly connected, FastEthernet0/0

То есть у каждого в таблице маршрут общий с соседом (192.168.1.0/24) и недоступный другому соседу (10.1.1.0 и 10.2.2.0 соответственно).
Теперь для связности 2 маршрутизатора должны обменяться своими маршрутными информациями. И вот тут поможет протокол RIP.
Переключаю PT в режим симуляции и перехожу к настройкам:
Router0:

Router0#conf t -- переход в режим глобальной конфигурации
Enter configuration commands, one per line.  End with CNTL/Z.
Router0(config)#router rip -- переход к настройке протокола
Router0(config-router)#version 2 -- включается протокол 2-ой версии
Router0(config-router)#no auto-summary -- отключается автоматическое суммирование
Router0(config-router)#network 10.1.1.0 -- активируется RIP на интерфейсе из данной подсети
Router0(config-router)#network 192.168.1.0

Router1:

Router1#conf t
Enter configuration commands, one per line.  End with CNTL/Z.
Router1(config)#router rip 
Router1(config-router)#version 2
Router1(config-router)#no auto-summary 
Router1(config-router)#network 10.2.2.0
Router1(config-router)#network 192.168.1.0

Сразу оговорюсь, что протокол RIP (также как EIGRP и OSPF) не анонсирует подсети таким образом. Он включает протокол на данном интерфейсе. То есть нельзя анонсировать то, что устройство не знает. И замечу, что включена вторая версия протокола и отключено автосуммирование. Изначально RIP был придуман для сетей с классовой адресацией. Поэтому суммирование он выполняет по тем же правилам, что не корректно в применении к бесклассовой. После перехода на бесклассовую адресацию, нужно было изменить работу протокола RIP. И вот во второй версии помимо подсети, передается еще и маска.

На схеме сразу же оба маршрутизатора что-то сгенерировали:

Первый пакет:

Это первый пакет, который генерирует роутер, при включении RIP. Тут важный аспект, что ничего не анонсируется и метрика = 16. (0x10 в шестнадцатиричном значение = 16 в десятичном).

Второй пакет:

А вот этот пакет уже несет полезную информацию.

1) ADDR FAMILY: 0x2 — означает IP протокол. В большинстве случаев это поле не меняется.
2) NETWORK: 10.1.1.0 — подсеть, которая анонсируется.
3) SUBNET: 255.255.255.0 — маска
4) NEXT HOP: 192.168.1.1 — следующий узел для достижимости анонсированной подсети.
5) METRIC: 0x1 — стоимость пути (в данном случае 1).

С обратной стороны придет точно такой же анонс (только будет соответствующая подсеть, nexthop).

В итоге после получения анонсов, таблицы у обоих роутеров будут выглядеть следующим образом:

Router0:

Router0#show ip route 
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route

Gateway of last resort is not set

     10.0.0.0/24 is subnetted, 2 subnets
C       10.1.1.0 is directly connected, Loopback1
R       10.2.2.0 [120/1] via 192.168.1.2, 00:00:03, FastEthernet0/0
C    192.168.1.0/24 is directly connected, FastEthernet0/0

Router1:

Router1#show ip route 
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route

Gateway of last resort is not set

     10.0.0.0/24 is subnetted, 2 subnets
R       10.1.1.0 [120/1] via 192.168.1.1, 00:00:16, FastEthernet0/0
C       10.2.2.0 is directly connected, Loopback1
C    192.168.1.0/24 is directly connected, FastEthernet0/0

В таблице появилась пометка с кодом R. То есть получен по протоколу RIP.
Если пустить пинги:

Router0:

Router0#ping 10.2.2.1

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.2.2.1, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/0/1 ms

Router1:

Router1#ping 10.1.1.1

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.1.1.1, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/0/0 ms

Анонсируемые подсети достижимы. Еще важный аспект, при работе с протоколами маршрутизации — это просмотр сформированной базы. Таблица маршрутизации — это конечный итог, куда заносится маршрут. Посмотреть базу можно командой show ip rip database:

Router0:

Router0#show ip rip database 
10.1.1.0/24    auto-summary
10.1.1.0/24    directly connected, Loopback1
10.2.2.0/24    auto-summary
10.2.2.0/24
    [1] via 192.168.1.2, 00:00:03, FastEthernet0/0
192.168.1.0/24    auto-summary
192.168.1.0/24    directly connected, FastEthernet0/0

Router1:

Router1#show ip rip database 
10.1.1.0/24    auto-summary
10.1.1.0/24
    [1] via 192.168.1.1, 00:00:13, FastEthernet0/0
10.2.2.0/24    auto-summary
10.2.2.0/24    directly connected, Loopback1
192.168.1.0/24    auto-summary
192.168.1.0/24    directly connected, FastEthernet0/0

Эта команда полезна, когда маршруты никак не заносятся в таблицу, при этом вроде как RIP включен и настроено все верно. Если маршрута нет в базе, значит он никак не попадет в таблицу и тут надо копать глубже. У циски, к счастью, есть хороший инструмент для дебага, который позволяет практически моментально понять, что происходит. В CPT он урезан и многое не показать, но на реальных железках, он прекрасен.
Например:

Router0#debug ?
  aaa           AAA Authentication, Authorization and Accounting
  crypto        Cryptographic subsystem
  custom-queue  Custom output queueing
  eigrp         EIGRP Protocol information
  ephone        ethernet phone skinny protocol
  frame-relay   Frame Relay
  ip            IP information
  ipv6          IPv6 information
  ntp           NTP information
  ppp           PPP (Point to Point Protocol) information

Посмотрим, что происходит в RIP:

Router0#debug ip rip 
RIP protocol debugging is on
Router0#RIP: sending  v2 update to 224.0.0.9 via Loopback1 (10.1.1.1)
RIP: build update entries
      10.2.2.0/24 via 0.0.0.0, metric 2, tag 0
      192.168.1.0/24 via 0.0.0.0, metric 1, tag 0
RIP: sending  v2 update to 224.0.0.9 via FastEthernet0/0 (192.168.1.1)
RIP: build update entries
      10.1.1.0/24 via 0.0.0.0, metric 1, tag 0
RIP: received v2 update from 192.168.1.2 on FastEthernet0/0
      10.2.2.0/24 via 0.0.0.0 in 1 hops

Сейчас все хорошо. Видно, что приходят/уходят апдейты и записи обновляются. Из за того, что дебажный инструмент обширен, лучше явно указывать что нужно ловить (как представлено выше). Иначе можно достаточно хорошо пригрузить устройство. Важно помнить про команду undebug all. Она отключает весь дебаг на устройстве.

Ссылка на скачивание лабы. Можете добавить еще один маршрутизатор к существующей схеме и связать их через RIP.

Теперь усложним схему и посмотрим в чем преимущество динамической маршрутизации.

Добавился Router2, который соединен с ранее созданными маршрутизаторами и анонсирует подсеть 10.3.3.0/24.

Настраиваются аналогично предыдущему примеру. Поэтому покажу только конфигурации:

Router0

Router0#show running-config
Building configuration…

Current configuration: 736 bytes
!
version 12.4
no service timestamps log datetime msec
no service timestamps debug datetime msec
no service password-encryption
!
hostname Router0
!
!
!
!
!
!
!
!
ip cef
no ipv6 cef
!
!
!
!
!
!
!
!
!
!
!
!
spanning-tree mode pvst
!
!
!
!
!
!
interface Loopback1
ip address 10.1.1.1 255.255.255.0
!
interface FastEthernet0/0
ip address 192.168.1.1 255.255.255.0
duplex auto
speed auto
!
interface FastEthernet0/1
ip address 192.168.3.1 255.255.255.0
duplex auto
speed auto
!
interface Vlan1
no ip address
shutdown
!
router rip
version 2
network 10.0.0.0
network 192.168.1.0
network 192.168.3.0
no auto-summary
!
ip classless
!
ip flow-export version 9
!
!
!
!
!
!
!
line con 0
!
line aux 0
!
line vty 0 4
login
!
!
!
end

Router1

Router1#show running-config
Building configuration…

Current configuration: 736 bytes
!
version 12.4
no service timestamps log datetime msec
no service timestamps debug datetime msec
no service password-encryption
!
hostname Router1
!
!
!
!
!
!
!
!
ip cef
no ipv6 cef
!
!
!
!
!
!
!
!
!
!
!
!
spanning-tree mode pvst
!
!
!
!
!
!
interface Loopback1
ip address 10.2.2.1 255.255.255.0
!
interface FastEthernet0/0
ip address 192.168.1.2 255.255.255.0
duplex auto
speed auto
!
interface FastEthernet0/1
ip address 192.168.4.1 255.255.255.0
duplex auto
speed auto
!
interface Vlan1
no ip address
shutdown
!
router rip
version 2
network 10.0.0.0
network 192.168.1.0
network 192.168.4.0
no auto-summary
!
ip classless
!
ip flow-export version 9
!
!
!
!
!
!
!
line con 0
!
line aux 0
!
line vty 0 4
login
!
!
!
end

Router2

Router2#show running-config
Building configuration…

Current configuration: 736 bytes
!
version 12.4
no service timestamps log datetime msec
no service timestamps debug datetime msec
no service password-encryption
!
hostname Router2
!
!
!
!
!
!
!
!
ip cef
no ipv6 cef
!
!
!
!
!
!
!
!
!
!
!
!
spanning-tree mode pvst
!
!
!
!
!
!
interface Loopback1
ip address 10.3.3.1 255.255.255.0
!
interface FastEthernet0/0
ip address 192.168.3.2 255.255.255.0
duplex auto
speed auto
!
interface FastEthernet0/1
ip address 192.168.4.2 255.255.255.0
duplex auto
speed auto
!
interface Vlan1
no ip address
shutdown
!
router rip
version 2
network 10.0.0.0
network 192.168.3.0
network 192.168.4.0
no auto-summary
!
ip classless
!
ip flow-export version 9
!
!
!
!
!
!
!
line con 0
!
line aux 0
!
line vty 0 4
login
!
!
!
end

Итого на Router0 мы имеем следующую таблицу маршрутизации:

Router0# show ip route 
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route

Gateway of last resort is not set

     10.0.0.0/24 is subnetted, 3 subnets
C       10.1.1.0 is directly connected, Loopback1
R       10.2.2.0 [120/1] via 192.168.1.2, 00:00:05, FastEthernet0/0
R       10.3.3.0 [120/1] via 192.168.3.2, 00:00:14, FastEthernet0/1
C    192.168.1.0/24 is directly connected, FastEthernet0/0
C    192.168.3.0/24 is directly connected, FastEthernet0/1
R    192.168.4.0/24 [120/1] via 192.168.1.2, 00:00:05, FastEthernet0/0
                    [120/1] via 192.168.3.2, 00:00:14, FastEthernet0/1

Из новых маршрутов — это 10.3.3.0/24, который доступен через 192.168.3.2 (т.е. Router2). И второй маршрут — это 192.168.4.0/24, который доступен через 192.168.1.2 (т.е. Router1) и 192.168.3.2 (т.е. Router2).
Вот в тех случаях, когда маршруты от разных устройств до одной подсети приходят с одинаковой метрикой, оба заносятся в таблицу. Такой случай называют балансировкой или ECMP (Equal-cost multi-path routing).
Если пройтись по нему через traceroute:

Router0#traceroute 192.168.4.1
Type escape sequence to abort.
Tracing the route to 192.168.4.1

  1   192.168.1.2     1 msec    0 msec    0 msec    
Router0#traceroute 192.168.4.1
Type escape sequence to abort.
Tracing the route to 192.168.4.1

  1   192.168.3.2     1 msec    0 msec    0 msec   

То есть меняется next-hop по очереди. Сама тема балансировки заслуживает отдельного внимания, т.к. у балансировки есть несколько стратегий по выбору оптимального пути. Случай, когда балансировка работает по очереди, как в нашем случае — называют Round-Robin.
Посмотрим базу RIP на Router0:

Router0#show ip rip database 
10.1.1.0/24    auto-summary
10.1.1.0/24    directly connected, Loopback1
10.2.2.0/24    auto-summary
10.2.2.0/24
    [1] via 192.168.1.2, 00:00:01, FastEthernet0/0
10.3.3.0/24    auto-summary
10.3.3.0/24
    [1] via 192.168.3.2, 00:00:23, FastEthernet0/1
192.168.1.0/24    auto-summary
192.168.1.0/24    directly connected, FastEthernet0/0
192.168.3.0/24    auto-summary
192.168.3.0/24    directly connected, FastEthernet0/1
192.168.4.0/24    auto-summary
192.168.4.0/24
    [1] via 192.168.1.2, 00:00:01, FastEthernet0/0    [1] via 192.168.3.2, 00:00:23, FastEthernet0/1

То есть нет никакого запасного маршрута, на случай выхода из строя 192.168.3.2. Теперь переключаю в режим симуляции и смотрю, что произойдет, если отключить на Router0 интерфейс fa0/1:


Видим, что отключился линк на Router0 и Router2. И сразу оба устройства генерируют сообщения:
Router0:

Router1:

Сразу сообщают, что данные маршруты теперь недостижимы. Делают они это, при помощи метрики, которая становится равной 16. Исторически так сложилось, что протокол RIP был рассчитан на работу с 15 транзитными участками. В то время никто не подразумевал, что сеть может быть настолько большой:-). Называется этот механизм Poison Reverse.
Таким образом сосед, получивший такой апдейт должен удалить этот маршрут из таблицы.
Вот, что происходит на Router1:

И самое интересное, что после этого Router1 отправит Router0 следующее:

То есть я больше не знаю о 192.168.3.0/24.

На данный момент таблица на Router0 выглядит следующим образом:

Router0#show ip route 
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route

Gateway of last resort is not set

     10.0.0.0/24 is subnetted, 2 subnets
C       10.1.1.0 is directly connected, Loopback1
R       10.2.2.0 [120/1] via 192.168.1.2, 00:00:29, FastEthernet0/0
C    192.168.1.0/24 is directly connected, FastEthernet0/0
R    192.168.4.0/24 [120/1] via 192.168.1.2, 00:00:29, FastEthernet0/0

То есть знает о своих подсетях и тех, что анонсировал Router1.
Двигаемся дальше:

Видим, что Router1 генерирует пакет с кучей подсетей и отправляет соседям. В том числе там подсеть 10.4.4.0.
И в таблице Router0 теперь:

Router0#show ip route 
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route

Gateway of last resort is not set

     10.0.0.0/24 is subnetted, 3 subnets
C       10.1.1.0 is directly connected, Loopback1
R       10.2.2.0 [120/1] via 192.168.1.2, 00:00:00, FastEthernet0/0
R       10.3.3.0 [120/2] via 192.168.1.2, 00:00:00, FastEthernet0/0
C    192.168.1.0/24 is directly connected, FastEthernet0/0
R    192.168.4.0/24 [120/1] via 192.168.1.2, 00:00:00, FastEthernet0/0

Замечу, что в таблице она записана с метрикой 2. Потому что данный маршрут направлен не напрямую от соседа, породившего его, а через транзитный маршрутизатор, который добавил 1.
Проверим доступность:

Router0#ping 10.3.3.1

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.3.3.1, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/0/1 ms

Router0#traceroute 10.3.3.1
Type escape sequence to abort.
Tracing the route to 10.3.3.1

  1   192.168.1.2     0 msec    0 msec    0 msec    
  2   192.168.4.2     2 msec    0 msec    0 msec   

Пинги проходят, а через traceroute видим, что пакет сначала попадает на Router1, а дальше маршрутизируется на Router2.
То есть видно очевидное преимущество динамического протокола маршрутизации над статическими. При падении линка и наличии резервного пути, топология сама перестроилась. На сегодняшний день мало кто использует данный протокол. И на это есть множество причин. Одна из них — это количество транзитных маршрутов. Вдобавок ко всему — это время сходимости. По умолчанию все маршрутизаторы отправляют друг другу апдейты каждые 30 секунд. Если обновление не приходит в течении 180 секунд, маршрут помечается, как Invalid. А как время простоя доходит до 240 секунд, он удаляется. Конечно таймеры можно подкрутить. Но проблема еще в том, что в большой сети, при наличии проблемы где-нибудь по середине, апдейт с одного конца до другого может просто-напросто не дойти. Хотя он доступен. Есть еще одна проблема. RIP хранит только лучший маршрут. Поэтому когда отключился линк, маршрут пропал и резервного пути не было. А значит, пока никто из соседей не проанонсирует подсеть, она будет недоступной. Это очень ощутимо для сетей, в которых простой стоит дорого. В связи с этим были придуманы протоколы, у которых время сходимости выше и есть резервные пути. О них и поговорим. Хочу также отметить, что RIP — протокол не плохой (уж явно лучше, чем использование только статических маршрутов в растущей сети). Поэтому изучение лучше начать с него. Таким образом концепция динамической маршрутизации уляжется лучше. Да что тут говорить, если Cisco сначала убрала RIP из своих экзаменов, а теперь снова включила.

Ссылка на скачивание.

Теперь перейдем к EIGRP. Если RIP уже давно является открытым протоколом, то EIGRP был проприетарным и работал только на устройствах Cisco. Но в 2016 году Cisco решила все же открыть его, оставив авторство за собой. Ссылка на RFC7868.
Cisco называет его гибридным (имея в виду, что он взял что-то от Distance-Vector, а что-то от Link-State). В отличии от RIP он работает более «умно». В том плане, что у него есть резервные маршруты и он «хранит некую топологию сети» (хотя это верно очень частично).
Оперирует он 3-мя таблицами:

1) EIGRP Neighbor Table: Здесь представлены все напрямую соединенные соседи (то есть кто Next-Hop и с какого интерфейса к нему добраться).

2) EIGRP Topology Table: Здесь представлены все изученные маршруты от соседей (с точкой назначения и метрикой)

3) Global Routing Table: Общая для всех таблица и сюда попадают лучшие маршруты из предыдущей таблицы.

Соберем топологию и запустим на ней EIGRP. Попутно буду рассказывать, что происходит, чтобы совместить минимум теории с максимумом практики.
Топологию возьмем ту же, что и с RIP. На ней настроены все IP-адреса, подняты интерфейсы, но не запущен протокол маршрутизации.

Router0:

Router0#show running-config
Building configuration…

Current configuration: 635 bytes
!
version 12.4
no service timestamps log datetime msec
no service timestamps debug datetime msec
no service password-encryption
!
hostname Router0
!
!
!
!
!
!
!
!
ip cef
no ipv6 cef
!
!
!
!
!
!
!
!
!
!
!
!
spanning-tree mode pvst
!
!
!
!
!
!
interface Loopback1
ip address 10.1.1.1 255.255.255.0
!
interface FastEthernet0/0
ip address 192.168.1.1 255.255.255.0
duplex auto
speed auto
!
interface FastEthernet0/1
ip address 192.168.3.1 255.255.255.0
duplex auto
speed auto
!
interface Vlan1
no ip address
shutdown
!
ip classless
!
ip flow-export version 9
!
!
!
!
!
!
!
line con 0
!
line aux 0
!
line vty 0 4
login
!
!
!
end

Router1

Router1#show running-config
Building configuration…

Current configuration: 635 bytes
!
version 12.4
no service timestamps log datetime msec
no service timestamps debug datetime msec
no service password-encryption
!
hostname Router1
!
!
!
!
!
!
!
!
ip cef
no ipv6 cef
!
!
!
!
!
!
!
!
!
!
!
!
spanning-tree mode pvst
!
!
!
!
!
!
interface Loopback1
ip address 10.2.2.1 255.255.255.0
!
interface FastEthernet0/0
ip address 192.168.1.2 255.255.255.0
duplex auto
speed auto
!
interface FastEthernet0/1
ip address 192.168.4.1 255.255.255.0
duplex auto
speed auto
!
interface Vlan1
no ip address
shutdown
!
ip classless
!
ip flow-export version 9
!
!
!
!
!
!
!
line con 0
!
line aux 0
!
line vty 0 4
login
!
!
!
end

Router2

Router2#show running-config
Building configuration…

Current configuration: 635 bytes
!
version 12.4
no service timestamps log datetime msec
no service timestamps debug datetime msec
no service password-encryption
!
hostname Router2
!
!
!
!
!
!
!
!
ip cef
no ipv6 cef
!
!
!
!
!
!
!
!
!
!
!
!
spanning-tree mode pvst
!
!
!
!
!
!
interface Loopback1
ip address 10.3.3.1 255.255.255.0
!
interface FastEthernet0/0
ip address 192.168.3.2 255.255.255.0
duplex auto
speed auto
!
interface FastEthernet0/1
ip address 192.168.4.2 255.255.255.0
duplex auto
speed auto
!
interface Vlan1
no ip address
shutdown
!
ip classless
!
ip flow-export version 9
!
!
!
!
!
!
!
line con 0
!
line aux 0
!
line vty 0 4
login
!
!
!
end

Сейчас в маршрутных таблицах роутеров только Connected подсети.
Переходим в настройки EIGRP.

Router0:

router eigrp 1 - номер автономной системы (должен совпадать на всех устройствах)
 network 10.1.1.0 0.0.0.255
 network 192.168.1.0 0.0.0.255
 network 192.168.3.0 0.0.0.255
 no auto-summary

Router1:

router eigrp 1 - номер автономной системы (должен совпадать на всех устройствах)
 network 10.2.2.0 0.0.0.255
 network 192.168.1.0 0.0.0.255
 network 192.168.4.0 0.0.0.255
 no auto-summary

Router2:

router eigrp 1 - номер автономной системы (должен совпадать на всех устройствах)
 network 10.3.3.0 0.0.0.255
 network 192.168.3.0 0.0.0.255
 network 192.168.4.0 0.0.0.255
 no auto-summary

Как описал выше, при включении EIGRP, ему присваивается номер AS. И он должен совпадать на всех соседях. В настройках анонса сети теперь добавляется wildcard маска. Если не вдаваться в подробности — это обратная запись маски (т.е. 0.0.0.255 — это 255.255.255.0). И отключение автосуммирования (наследие классовых сетей).

В итоге видим следующую картину:

Посмотрим, что сгенерировал Router0:

Видим кучу полей и попробуем разобраться, что в них. Мы помним, что RIP был не самым надежным вариантом. Он не понимал какой номер пакета, не было механизма отслеживания, подтверждения и прочего. Да и плюс нижестоящий протокол был UDP, который тоже не имеет механизма надежности. EIGRP вообще работает сразу поверх IP (не используя механизмы транспортного уровня). Поэтому все механизмы по отслеживанию ложатся на его поля.
Из важного: появились флаги, SEQ. NUM (номер отправляемого пакета), ACK.NUM (подтверждение на принятый пакет), номер автономной системы (заданный при создании), и параметры K. Вот тут остановлюсь. В RIP метрика считалась тривиально. Пакет пришел, добавляю единицу и передаю дальше. В EIGRP метрика считается исходя из K значений:

1) K1 — bandwidth (или пропускная способность)
2) K2 — load (загруженность)
3) K3 — delay (задержка)
4) K4 — reliability (надежность)
5) K5 — MTU (Maximum Transmission Unit).

Но как правило, при расчете используются только K1 и K3.
Формула таким образом выглядит:

Metric = (K1 * bandwidth) + [(K2 * bandwidth) / (256 - load)] + (K3 * delay)

.
Запоминать ее наизусть не надо. Просто важно понимать, как происходит расчет метрики.
Вот, что происходит, когда пакет доходит до Router0:

Router0(config)#
%DUAL-5-NBRCHANGE: IP-EIGRP 1: Neighbor 192.168.1.2 (FastEthernet0/0) is up: new adjacency

%DUAL-5-NBRCHANGE: IP-EIGRP 1: Neighbor 192.168.3.2 (FastEthernet0/1) is up: new adjacency

К сожалению CPT наглухо тормозит от количества пакетов, поэтому покажу, что происходит в непосредственно таблицах Router0 (в остальных будет аналогично. Поэтому покажу на одном). А после подробно покажу процесс установления соседства в режиме дебага между двумя маршрутизаторами:

1) Neighbor Table:

Router0#show ip eigrp neighbors 
IP-EIGRP neighbors for process 1
H   Address         Interface      Hold Uptime    SRTT   RTO   Q   Seq
                                   (sec)          (ms)        Cnt  Num
0   192.168.1.2     Fa0/0          11   00:00:41  40     1000  0   42
1   192.168.3.2     Fa0/1          10   00:00:41  40     1000  0   38

Из важного. Здесь показан сосед, интерфейс (за которым он находится), hold (таймер, по истечении которого, произойдет разрыв соседства. При получении пакета от соседа, он повышается), uptime (как долго живет соседство), SRTT (время между отправкой и подтверждением), RTO (интервал между отправкой) и номер пакета.

2) Router0#show ip eigrp topology

IP-EIGRP Topology Table for AS 1/ID(10.1.1.1)

Codes: P - Passive, A - Active, U - Update, Q - Query, R - Reply,
       r - Reply status

P 10.1.1.0/24, 1 successors, FD is 128256
         via Connected, Loopback1
P 10.2.2.0/24, 1 successors, FD is 156160
         via 192.168.1.2 (156160/128256), FastEthernet0/0
P 10.3.3.0/24, 1 successors, FD is 156160
         via 192.168.3.2 (156160/128256), FastEthernet0/1
P 192.168.1.0/24, 1 successors, FD is 28160
         via Connected, FastEthernet0/0
P 192.168.3.0/24, 1 successors, FD is 28160
         via Connected, FastEthernet0/1
P 192.168.4.0/24, 2 successors, FD is 30720
         via 192.168.3.2 (30720/28160), FastEthernet0/1
         via 192.168.1.2 (30720/28160), FastEthernet0/0

Тут все просто. Если все хорошо с полученным маршрутом, то он становится Passive. О других полях и их значениях расскажу чуть позже. Сейчас достаточно того, что в данной таблице все хорошо. Из нового — вводится понятие Successor. Successor-ом выбирается тот, у кого наименьшая стоимость до конкретной подсети. Сейчас на каждый маршрут по одному Successor-у и только на маршрут 192.168.4.0 их два. Причем они оба выбраны Successor-ами из за одинаковой метрики (следовательно будет работать балансировка). Теперь обращу внимание на странные числа у каждого Successor-а.
EIGRP при расчете метрики оперирует 2-мя понятиями: Advertised Distance и Feasible Distance. Оба рассчитываются той страшной формулой:

1) Advertised Distance — это анонс стоимости от соседа. То есть сколько стоит от него (соседа) и до точки назначения.
2) Feasible Distance — это стоимость от самого роутера до точки назначения. То есть — это Adverticed Distance + стоимость линка до соседа.

Возьмем для примера запись от маршрута 10.2.2.0:

P 10.2.2.0/24, 1 successors, FD is 156160
         via 192.168.1.2 (156160/128256), FastEthernet0/0

Число 128256 — это Advertised Distance, а 156160 — это Feasible Distance.
Соответственно, чем меньше Feasible Distance, тем выгоднее маршрут и такой сосед объявляется Successor-ом. После записи о количестве successors, всегда пишется какая FD была выбрана.
На текущий момент он работает приблизительно также, как и RIP. Только почему то метрика стала сложнее и добавилось больше таблиц. Но вот у EIGRP есть несколько фокусов в кармане. Один из них — это Feasible Successor (не путать с Feasible Distance). Это как раз тот самый резервный путь на случай отказа Successor. Сейчас у нас нет резервного пути (например до маршрута 10.2.2.0). Если падает 192.168.1.2, этот маршрут теряется до момента, пока о нем не расскажет другой сосед. Но мы прекрасно знаем, что о нем может рассказать Router2 (пусть и с худшей метрикой). Но EIGRP все же основан на неких правилах, что не позволяет ему так сделать. А правило заключается в следующем:

Advertised distance of feasible successor < Feasible distance of successor

.
То есть стоимость анонсируемая от Feasible Successor (потенциально backup-роутера) должна быть меньше, чем Feasible Distance Successor (то есть полная стоимость через основного).
Звучит тяжело, но если проще. Взять тот же маршрут 10.2.2.0. Через него FD = 156160. Значит AD от Feasible Successor должна принять любое число меньшее 156160. Причем не важно сколько стоит линк от текущего роутера до соседа (хоть 1000000). Главное, чтобы backup-сосед анонсировал с меньшей метрикой, чем successor. Это правило используется для предотвращения петель.
Чтобы понять, как это работает, внесем изменения в топологию.
Сейчас на Router0 таблица топологии выглядит следующим образом:

Router0#show ip eigrp topology 
IP-EIGRP Topology Table for AS 1/ID(10.1.1.1)

Codes: P - Passive, A - Active, U - Update, Q - Query, R - Reply,
       r - Reply status

P 10.1.1.0/24, 1 successors, FD is 128256
         via Connected, Loopback1
P 10.2.2.0/24, 1 successors, FD is 156160
         via 192.168.1.2 (156160/128256), FastEthernet0/0
P 10.3.3.0/24, 1 successors, FD is 156160
         via 192.168.3.2 (156160/128256), FastEthernet0/1
P 192.168.1.0/24, 1 successors, FD is 28160
         via Connected, FastEthernet0/0
P 192.168.3.0/24, 1 successors, FD is 28160
         via Connected, FastEthernet0/1
P 192.168.4.0/24, 2 successors, FD is 30720
         via 192.168.1.2 (30720/28160), FastEthernet0/0
         via 192.168.3.2 (30720/28160), FastEthernet0/1

Маршрут до 10.2.2.0/24 доступен через 192.168.1.2, что верно, так как Router1 его породил и так добраться быстрее всего. Поэтому Router2 не сможет проанонсировать лучше, так как его AD будет всегда выше.
Теперь переведем скорость интерфейсов между Router0 и Router1 на 10Мбит/с. Таким образом ухудшим канал, и внесем изменения в пересчет топологии.

Router0:

interface FastEthernet0/0
 ip address 192.168.1.1 255.255.255.0
 duplex auto
 speed 10

Router1:

interface FastEthernet0/0
 ip address 192.168.1.2 255.255.255.0
 duplex auto
 speed 10

Таким образом на Router0:

Router0#show ip eigrp topology 
IP-EIGRP Topology Table for AS 1/ID(10.1.1.1)

Codes: P - Passive, A - Active, U - Update, Q - Query, R - Reply,
       r - Reply status

P 10.1.1.0/24, 1 successors, FD is 128256
         via Connected, Loopback1
P 10.2.2.0/24, 1 successors, FD is 158720
         via 192.168.3.2 (158720/156160), FastEthernet0/1
         via 192.168.1.2 (179200/128256), FastEthernet0/0
P 10.3.3.0/24, 1 successors, FD is 156160
         via 192.168.3.2 (156160/128256), FastEthernet0/1
P 192.168.1.0/24, 1 successors, FD is 51200
         via Connected, FastEthernet0/0
P 192.168.3.0/24, 1 successors, FD is 28160
         via Connected, FastEthernet0/1
P 192.168.4.0/24, 1 successors, FD is 30720
         via 192.168.3.2 (30720/28160), FastEthernet0/1
         via 192.168.1.2 (53760/28160), FastEthernet0/0

Видим, что до 10.2.2.0 теперь 2 пути, но Successor выбирается тот, у кого FD выгоднее. А выгоднее, через 192.168.3.2 (то есть Router2), так как у него скорость интерфейсов 100Мбит/с, хоть и преодолеть придется 2 хопа. А теперь обратим внимание, почему попали 2 записи в этот маршрут.

  via 192.168.3.2 (158720/156160), FastEthernet0/1
         via 192.168.1.2 (179200/128256), FastEthernet0/0

А потому что AD у 192.168.1.2 лучше, чем FD у 192.168.3.2 (128256<158720).
И в таблицу маршрутизации попадет маршрут через выбранного Successor-а, то есть 192.168.3.2:

Router0#show ip route 
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route

Gateway of last resort is not set

     10.0.0.0/24 is subnetted, 3 subnets
C       10.1.1.0 is directly connected, Loopback1
D       10.2.2.0 [90/158720] via 192.168.3.2, 00:14:49, FastEthernet0/1
D       10.3.3.0 [90/156160] via 192.168.3.2, 00:59:42, FastEthernet0/1
C    192.168.1.0/24 is directly connected, FastEthernet0/0
C    192.168.3.0/24 is directly connected, FastEthernet0/1
D    192.168.4.0/24 [90/30720] via 192.168.3.2, 00:59:42, FastEthernet0/1

Для теста отказоустойчивости, запустим пинг на 1000 пакетов и в этот момент поотключаем основной канал через 192.168.3.2:

Router0#ping 
Protocol [ip]: 
Target IP address: 10.2.2.1
Repeat count [5]: 1000
Datagram size [100]: 
Timeout in seconds [2]: 
Extended commands [n]: 
Sweep range of sizes [n]: 
Type escape sequence to abort.
Sending 1000, 100-byte ICMP Echos to 10.2.2.1, timeout is 2 seconds:
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1, changed state to down

%DUAL-5-NBRCHANGE: IP-EIGRP 1: Neighbor 192.168.3.2 (FastEthernet0/1) is down: interface down
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1, changed state to up

%DUAL-5-NBRCHANGE: IP-EIGRP 1: Neighbor 192.168.3.2 (FastEthernet0/1) is up: new adjacency
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Success rate is 100 percent (403/403), round-trip min/avg/max = 0/0/4 ms

Как видно, линк падал, но пакеты не прекращали ходить. Тем самым резервирование отрабатывало. Это одна из фишек EIGRP.
Вторая фишка — это неэквивалентная балансировка. Как помним, обычная балансировка работает, если 2 маршрута приходят с абсолютно одинаковой метрикой. EIGRP же умеет балансировать маршрутами с разной метрикой.
Проверим на существующей топологии. На Router0 имеем следующее:

Topology Table:

Router0#show ip eigrp topology 
IP-EIGRP Topology Table for AS 1/ID(10.1.1.1)

Codes: P - Passive, A - Active, U - Update, Q - Query, R - Reply,
       r - Reply status

P 10.1.1.0/24, 1 successors, FD is 128256
         via Connected, Loopback1
P 10.2.2.0/24, 1 successors, FD is 158720
         via 192.168.3.2 (158720/156160), FastEthernet0/1
         via 192.168.1.2 (179200/128256), FastEthernet0/0
P 10.3.3.0/24, 1 successors, FD is 156160
         via 192.168.3.2 (156160/128256), FastEthernet0/1
P 192.168.1.0/24, 1 successors, FD is 51200
         via Connected, FastEthernet0/0
P 192.168.3.0/24, 1 successors, FD is 28160
         via Connected, FastEthernet0/1
P 192.168.4.0/24, 1 successors, FD is 30720
         via 192.168.3.2 (30720/28160), FastEthernet0/1
         via 192.168.1.2 (53760/28160), FastEthernet0/0

Route Table:

Router0#show ip route 
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route

Gateway of last resort is not set

     10.0.0.0/24 is subnetted, 3 subnets
C       10.1.1.0 is directly connected, Loopback1
D       10.2.2.0 [90/158720] via 192.168.3.2, 00:02:57, FastEthernet0/1
D       10.3.3.0 [90/156160] via 192.168.3.2, 00:04:45, FastEthernet0/1
C    192.168.1.0/24 is directly connected, FastEthernet0/0
C    192.168.3.0/24 is directly connected, FastEthernet0/1
D    192.168.4.0/24 [90/30720] via 192.168.3.2, 00:04:45, FastEthernet0/1

То есть сейчас мы имеем два маршрута до 10.2.2.0/24, но используем всего один (наилучший, исходя из метрики). Чтобы правило заработало, нужно изменить множитель метрики (или с англ. variance).
Правило его работы следующее:

 FD Feasible Successor < FD Successor

. Иначе говоря стоимость полного пути запасного маршрута должна быть «искусственно» меньше основного.
Сейчас ситуация следующая:

P 10.2.2.0/24, 1 successors, FD is 158720
         via 192.168.3.2 (158720/156160), FastEthernet0/1
         via 192.168.1.2 (179200/128256), FastEthernet0/0

Значит нужно метрику 158720 умножить настолько, чтобы она стала больше 179200. Умножать можно только на целое число, поэтому выберем 2.

Router0(config)#router eigrp 1
Router0(config-router)#variance 2
%DUAL-5-NBRCHANGE: IP-EIGRP 1: Neighbor 192.168.1.2 (FastEthernet0/0) is up: new adjacency

%DUAL-5-NBRCHANGE: IP-EIGRP 1: Neighbor 192.168.3.2 (FastEthernet0/1) is up: new adjacency

В итоге имеем:

Router0#show ip route 
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route

Gateway of last resort is not set

     10.0.0.0/24 is subnetted, 3 subnets
C       10.1.1.0 is directly connected, Loopback1
D       10.2.2.0 [90/158720] via 192.168.3.2, 00:02:31, FastEthernet0/1
                 [90/179200] via 192.168.1.2, 00:02:31, FastEthernet0/0
D       10.3.3.0 [90/156160] via 192.168.3.2, 00:02:31, FastEthernet0/1
C    192.168.1.0/24 is directly connected, FastEthernet0/0
C    192.168.3.0/24 is directly connected, FastEthernet0/1
D    192.168.4.0/24 [90/30720] via 192.168.3.2, 00:02:31, FastEthernet0/1
                    [90/53760] via 192.168.1.2, 00:02:31, FastEthernet0/0

Оба маршрута попали в таблицу маршрутизации. Теперь проверим, что балансировка действительно работает:

Router0#traceroute 10.2.2.1
Type escape sequence to abort.
Tracing the route to 10.2.2.1

  1   192.168.3.2     0 msec    0 msec    0 msec    
Router0#traceroute 10.2.2.1
Type escape sequence to abort.
Tracing the route to 10.2.2.1

  1   192.168.1.2     0 msec    0 msec    0 msec  

Балансировка работает.
Ссылка на собранную EIGRP топологию.
И ссылка на топологию с измененной скоростью и балансировкой. Если EIGRP не совсем уложился в голове (а это нормальное явление, если изучаете его впервые), то лучше самому собрать топологию, ориентируясь на статью.

Теперь рассмотрим, как происходит соседство в режиме дебага. Если вы дошли сюда с самой первой статьи и принцип хождения пакетов понятен, то лучше уже учиться со включенным дебагом. В рабочих условиях не будет такого инструмента, чтобы красиво смотреть на пакеты и придется пользоваться другими методами. К счастью, если это циска — то решение с дебагом отличное. Единственное — важно включать не все режимы, а только необходимые. Можно, конечно, отзеркалировать порт и просниффать через wireshark. Но не всегда есть физический доступ к железке.

Итак, топология:

Я просто удалил Router2, отключил интерфейсы, которые были соединены с ним и удалил анонсы маршрутов из EIGRP.

Теперь включаю дебаг на Router0 и наблюдаю:

Router0#debug eigrp fsm 
EIGRP FSM Events/Actions debugging is on
DUAL: rcvupdate: 192.168.1.0/24 via Connected metric 28160/0 -- connected маршрут. AD=0 (так как ему он пришел не от соседа. А вот его цена интерфейса 28160.

DUAL: Find FS for dest: 192.168.1.0/24. FD is 4294967295, RD is 4294967295 

DUAL: RT installed 192.168.1.0/24 via 0.0.0.0 -- маршрут 192.168.1.0/24 заносится в таблицу, как connected (то есть на себя).
DUAL: Send update about 192.168.1.0/24.  Reason: metric chg -- отправляет измененную метрику.

DUAL: Send update about 192.168.1.0/24.  Reason: new if -- отправляет информацию, что появился новый интерфейс

DUAL: rcvupdate: 10.1.1.0/24 via Connected metric 128256/0 -- та же история с Loopback

DUAL: Find FS for dest: 10.1.1.0/24. FD is 128256, RD is 0

DUAL: Send update about 10.1.1.0/24.  Reason: new if

%DUAL-5-NBRCHANGE: IP-EIGRP 1: Neighbor 192.168.1.2 (FastEthernet0/0) is up: new adjacency

DUAL: rcvupdate: 10.2.2.0/24 via 192.168.1.2 metric 156160/128256 - получает маршрут с AD и накладывает свою метрику.

DUAL: Find FS for dest: 10.2.2.0/24. FD is 4294967295, RD is 4294967295

DUAL: RT installed 10.2.2.0/24 via 192.168.1.2 -- устанавливает маршрут 10.2.2.0/24 через соседа 192.168.1.2
DUAL: Send update about 10.2.2.0/24.  Reason: metric chg

DUAL: rcvupdate: 10.1.1.0/24 via 192.168.1.2 metric 4294967295/4294967295

DUAL: Find FS for dest: 10.1.1.0/24. FD is 128256, RD is 0

И еще, что стоит упомянуть — это типы EIGRP сообщений. Их 5:
1) Hello — эти пакеты отправляются на мультикастовый адрес 224.0.0.10 ближайшим соседям. Подтверждения в ответ не требуют. Нужны только для идентификации и своего рода keepalive механизмом.
2) Update — содержат маршрутную информацию. Как только обнаруживаются соседи, маршрутизатор сразу отправляет им данный пакет. После чего соседи заполняют таблицу EIGRP топологии. Может отправляться по мультикастовому адресу или юникастовому. Эти пакеты требуют ответа.
3) Query — пакет запроса потерянного маршрута. То есть когда маршрутизатор теряет запись об этом маршруте и не имеет запасного пути к нему. Может отправляться одному через unicast или группе соседей через multicast.
4) Reply — ответ на Query-запрос. Данный пакет всегда отправляется на unicast-адрес (то есть тому, кто его запросил). Требует подтверждения.
5) ACK — используется для подтверждения Update, Query и Reply пакетов. Всегда отправляется на unicast-адрес.

Помните топологию EIGRP с множеством кодов? Так вот эти коды и отображают состояние и отправляемое сообщение на каждый из маршрутов. Вот так в принципе работает EIGRP.

Переходим к последнему протоколу — это OSPF (англ. Open Shortest Path First). Относится он к группе link state или протокол состояния канала. Если RIP с EIGRP работали более-менее похоже, то OSPF работает совершенно по другому. Если дистанционно-векторные протоколы сравнивались с дорожными указателями, то протоколы состояния канала можно сравнить с дорожным навигатором. В этом как раз и отличие. OSPF сначала строит карту сети, а потом выбирает лучший путь. Да, таким образом он более ресурсозатратный протокол, нежели его коллеги, но на текущий момент это не столь критично, как было лет 25-30 назад.

Итак. Почему Link-State:
1) Link — интерфейс маршрутизатора.
2) State — его состояние и как он подключен к соседям.

Оперирует они:
1) LSA (от англ. link-state advertisements) — это как раз таки объявления, которыми они обмениваются между собой. Ниже их разберем.
2) LSDB (от англ. link-state database) — как раз эти LSA формируют базу. Или ту самую карту сети.

Тут встает вопрос. А хорошо ли то, что каждый маршрутизатор обменивается своей информацией с каждым соседом?!
Представим топологию:

Что если каждый маршрутизатор будет отсылать маршрут каждому из своих соседей?! Мы получим огромный флуд трафика. При этом один и тот же анонс будет зеркалироваться… Подумали в свое время инженеры и решили, что эффективнее держать одного маршрутизатора, которому все остальные будут отсылать уведомления, а он будет ответственным за весь флуд. Тем самым смысл тот же, только трафика будет меньше. А чтобы не случилось ситуации, когда «главный» умирает и вся сеть останавливается, придумали держать запасного маршрутизатора, который, в случае «смерти» основного, возьмет его обязанности на себя.
Маршрутизатор, который берет роль основного на себя, называется DR (от англ. Designated Router), а запасной маршрутизатор называется BDR (от англ. Backup Designated Router).
Такая логика работает автоматически в сетях с множественным доступом, которой и является Ethernet. Если у вас сеть точка-точка (пусть даже Ethernet и соединены друг с другом напрямую), то DR и BDR выбирать не обязательно, так как всего 2 участника (но в Ethernet они все же будут выбраны). Но никто не мешает вам изменить логику OSPF и прописать каждого соседа вручную. Только зачем?)
Так вот после того, как LSDB заполнена, каждый маршрутизатор начинает высчитывать самый выгодный маршрут до каждой подсети. Использует он для этого алгоритм SPF (от англ. Shortest Path First). Лучший подсчитанный маршрут попадает в таблицу маршрутизации.
Давайте перейдем к практике и по ходу разбираться.
Есть схема:

Схема самая простая. Единственное, что новое — это очерчена зона. Я специально ее нарисовал. Дело в том, что OSPF обязательно нужно указывать зону для которой включается протокол. Это сделано для того, чтобы снизить нагрузку в расчетах пути. Как я говорил ранее, протокол появился достаточно давно и для того времени производительность играла большую роль. Сейчас тоже принято делить на зоны. Но сейчас это делается для снижения не нужного трафика.
Зоной по-умолчанию всегда выбирается нулевая. Ее еще называют backbone зоной и не с проста. Если у вас в сети много различных зон, то соединены они должны быть через нулевую. То есть нельзя перейти из 11-ой в 25-ую зону напрямую. Обязательно нужно пройти через нулевую, а из нулевой проследовать в требуемую. Единственный случай, когда можно пройти из зоны в зоны, миновав нулевую — это использование Virtual Link. Почитать о ней можно здесь.
Сейчас у нас 2 маршрутизатора в нулевой зоне. На маршрутизаторах настроены IP-адреса и создан Loopback. Ниже под спойлерами конфиги.

Router0

Router0#show running-config
Building configuration…

Current configuration: 622 bytes
!
version 12.4
no service timestamps log datetime msec
no service timestamps debug datetime msec
no service password-encryption
!
hostname Router0
!
!
!
!
!
!
!
!
ip cef
no ipv6 cef
!
!
!
!
!
!
!
!
!
!
!
!
spanning-tree mode pvst
!
!
!
!
!
!
interface Loopback1
ip address 10.1.1.1 255.255.255.0
!
interface FastEthernet0/0
ip address 192.168.1.1 255.255.255.0
duplex auto
speed auto
!
interface FastEthernet0/1
no ip address
duplex auto
speed auto
shutdown
!
interface Vlan1
no ip address
shutdown
!
ip classless
!
ip flow-export version 9
!
!
!
!
!
!
!
line con 0
!
line aux 0
!
line vty 0 4
login
!
!
!
end

Router1

Router1#show running-config
Building configuration…

Current configuration: 622 bytes
!
version 12.4
no service timestamps log datetime msec
no service timestamps debug datetime msec
no service password-encryption
!
hostname Router1
!
!
!
!
!
!
!
!
ip cef
no ipv6 cef
!
!
!
!
!
!
!
!
!
!
!
!
spanning-tree mode pvst
!
!
!
!
!
!
interface Loopback1
ip address 10.2.2.1 255.255.255.0
!
interface FastEthernet0/0
ip address 192.168.1.2 255.255.255.0
duplex auto
speed auto
!
interface FastEthernet0/1
no ip address
duplex auto
speed auto
shutdown
!
interface Vlan1
no ip address
shutdown
!
ip classless
!
ip flow-export version 9
!
!
!
!
!
!
!
line con 0
!
line aux 0
!
line vty 0 4
login
!
!
!
end

Теперь включаю OSPF для интерфейсов FastEthernet0/0 и Loopback1 обоих роутеров:

router ospf 1
 network 192.168.1.0 0.0.0.255 area 0
 network 10.1.1.0 0.0.0.255 area 0
!

router ospf 1
 network 10.2.2.0 0.0.0.255 area 0
 network 192.168.1.0 0.0.0.255 area 0
!

Конфигурация простая. Указывается подсеть, wildcard маска и номер зоны. После видим сообщения:

На Router0:

Router0#
00:56:22: %OSPF-5-ADJCHG: Process 1, Nbr 10.2.2.1 on FastEthernet0/0 from LOADING to FULL, Loading Done

На Router1:

Router1(config-router)#
00:56:21: %OSPF-5-ADJCHG: Process 1, Nbr 10.1.1.1 on FastEthernet0/0 from LOADING to FULL, Loading Done

Соседство, судя по сообщению установилось. Но, если обратить внимание, то почему то соседство выбрано между адресами из Loopback интерфейсов. Это на самом деле не адрес, а идентификатор или Router ID. Если в самом процессе он явно не указывается, то выбирается автоматически. Если настроены Loopback интерфейсы, то выбирается наибольший IP-адрес из них. Если Loopback не настроены, то выбирается наибольший IP-адрес из обычного физического интерфейса. У нас Loopback был настроен, а значит он и будет выбран RID.
Так как процессы на обоих роутерах одинаковые, покажу на примере Router0:
Так как соседство установлено, посмотрим список соседей.

Router0#show ip ospf neighbor 


Neighbor ID     Pri   State           Dead Time   Address         Interface
10.2.2.1          1   FULL/BDR        00:00:38    192.168.1.2     FastEthernet0/0

Видим 10.2.2.1 (Router1). Статус Full (чуть ниже расскажу и об этом), роль BDR (то есть Router0 выбран DR). Его физический IP-адрес и с какого интерфейса доступен.
Теперь посмотрим на базу данных OSPF:

Router0#show ip ospf database 
            OSPF Router with ID (10.1.1.1) (Process ID 1)

                Router Link States (Area 0)

Link ID         ADV Router      Age         Seq#       Checksum Link count
10.1.1.1        10.1.1.1        259         0x80000004 0x0047fb 2
10.2.2.1        10.2.2.1        259         0x80000004 0x00b586 2

                Net Link States (Area 0)
Link ID         ADV Router      Age         Seq#       Checksum
192.168.1.1     10.1.1.1        259         0x80000002 0x00e9ca

Подробное ее содержание изучается в курсе CCNP Route, поэтому расскажу вкратце. Есть несколько типов LSA-сообщений. В нашей схеме используются только Type1 (Router) и Type2(Network). Первое генерится каждым маршрутизатором в пределах зоны и дальше зоны не уходит. Второй тип генерируется DR-ом и содержит адрес DR и инфу о всех маршрутизаторах в зоне.
Например, так выглядит Type1 с консоли Router0:

Router0#show ip ospf database router 

            OSPF Router with ID (10.1.1.1) (Process ID 1)

                Router Link States (Area 0)

  LS age: 665
  Options: (No TOS-capability, DC)
  LS Type: Router Links
  Link State ID: 10.1.1.1
  Advertising Router: 10.1.1.1
  LS Seq Number: 80000004
  Checksum: 0x47fb
  Length: 48
  Number of Links: 2

    Link connected to: a Transit Network
     (Link ID) Designated Router address: 192.168.1.1
     (Link Data) Router Interface address: 192.168.1.1
      Number of TOS metrics: 0
       TOS 0 Metrics: 1

    Link connected to: a Stub Network
     (Link ID) Network/subnet number: 10.1.1.1
     (Link Data) Network Mask: 255.255.255.255
      Number of TOS metrics: 0
       TOS 0 Metrics: 1

  LS age: 665
  Options: (No TOS-capability, DC)
  LS Type: Router Links
  Link State ID: 10.2.2.1
  Advertising Router: 10.2.2.1
  LS Seq Number: 80000004
  Checksum: 0xb586
  Length: 48
  Number of Links: 2

    Link connected to: a Stub Network
     (Link ID) Network/subnet number: 10.2.2.1
     (Link Data) Network Mask: 255.255.255.255
      Number of TOS metrics: 0
       TOS 0 Metrics: 1

    Link connected to: a Transit Network
     (Link ID) Designated Router address: 192.168.1.1
     (Link Data) Router Interface address: 192.168.1.2
      Number of TOS metrics: 0
       TOS 0 Metrics: 1

То есть LSA каждого маршрутизатора, в которых он сообщает о своих сетях.

А вот так Type2:

Router0#show ip ospf database network 

            OSPF Router with ID (10.1.1.1) (Process ID 1)

                Net Link States (Area 0)

  Routing Bit Set on this LSA
  LS age: 686
  Options: (No TOS-capability, DC)
  LS Type: Network Links
  Link State ID: 192.168.1.1  (address of Designated Router)
  Advertising Router: 10.1.1.1
  LS Seq Number: 80000002
  Checksum: 0xe9ca
  Length: 32
  Network Mask: /24
        Attached Router: 10.2.2.1
        Attached Router: 10.1.1.1

То есть как раз адрес DR (кому отправлять свои LSA и список маршрутизаторов в зоне).
И теперь можно посмотреть на таблицу маршрутизации:

Router0#show ip route 
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route

Gateway of last resort is not set

     10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
C       10.1.1.0/24 is directly connected, Loopback1
O       10.2.2.1/32 [110/2] via 192.168.1.2, 00:48:02, FastEthernet0/0
C    192.168.1.0/24 is directly connected, FastEthernet0/0

Видим букву O (это значит, что маршрут получен из той же зоны, что и данный маршрутизатор). Можно заметить, что в таблицу записан с маской /32. Это потому что адрес из Loopback интерфейса и обычно такие адреса служат для всяких RID и прочих идентификаторов. Это не подсеть, а значит нет смысла анонсировать с тем же префиксом, что и сам интерфейс. Но такое поведение работает не на всех цисках. Поэтому тут надо быть внимательнее. Рядом видим привычную административную дистанцию (у циски это 110, но можно поменять) и метрику, которая равна 2-ум. Здесь метрика считается проще, чем у EIGRP. Формула:

Cost = Reference Bandwidth / Interface Bandwidth

.
Reference Bandwidth — это некое заданное число (здесь по-умолчанию 100). Оно прошито внутри логики и меняется командой auto-cost reference-bandwidth число в настройках OSPF процесса.
А вот Interface Bandwidth берется ровно такое, какая пропускная способность у интерфейса. На нашем интерфейсе это 100, поэтому метрика = 1. Так как Router1 анонсирует уже с метрикой 1, то накладывая свою стоимость в 1-цу, получаем 2.
OSPF для меня в свое время менялся в сложности понимания. Сначала казалось все легко, включил и все работает. Дальше, когда начинаешь углубляться в структуру LSA и как происходит формирование и расчет, теряешься. А после понимания, он снова становится легким. Его понимание приходит только после практики. Поэтому можете потренироваться на этой топологии. Ссылка на нее.
Пару слов по балансировке. Здесь она строго эквивалентная. Нельзя делать, как в EIGRP. Всего в кандидатах может быть до 16 маршрутов, но в таблицу попадут только 4.
Если предыдущая схема понятна, то двигаемся дальше. Добавим еще один маршрутизатор и соединим их, при помощи коммутатора:

Я взял за основу предыдущую, адреса все те же самые, включен OSPF. На Router2 также включен OSPF и настроены адреса согласно схеме. Теперь смотрим, что произошло со стороны того же Router0. Ввожу команду просмотра соседей:

Router0#show ip ospf neighbor 


Neighbor ID     Pri   State           Dead Time   Address         Interface
10.2.2.1          1   FULL/BDR        00:00:37    192.168.1.2     FastEthernet0/0
10.3.3.1          1   FULL/DROTHER    00:00:36    192.168.1.3     FastEthernet0/0

И вижу нового соседа, но с пометкой DROTHER. Это значит, что маршрутизатор Router2 (новый) не является DR или BDR. Обратите внимание, что DR (Router0) установил Full соседство со всеми соседями.
Ввожу нового игрока на поле — Router3:

Единственное, что у него настроено — это IP-адрес 192.168.1.4/24 на FastEthernet 0/0 и включен OSPF. Он тут для наглядности.
Со стороны Router0:

Router0#show ip ospf neighbor 


Neighbor ID     Pri   State           Dead Time   Address         Interface
10.2.2.1          1   FULL/BDR        00:00:31    192.168.1.2     FastEthernet0/0
10.3.3.1          1   FULL/DROTHER    00:00:31    192.168.1.3     FastEthernet0/0
192.168.1.4       1   FULL/DROTHER    00:00:30    192.168.1.4     FastEthernet0/0

Так как нет адреса на Loopback интерфейсе и не задан вручную RID, выбран адрес с физического интерфейса. А теперь переходим к Router2 и смотрим на его список соседей:

Router2#show ip ospf neighbor 


Neighbor ID     Pri   State           Dead Time   Address         Interface
10.2.2.1          1   FULL/BDR        00:00:32    192.168.1.2     FastEthernet0/0
10.1.1.1          1   FULL/DR         00:00:32    192.168.1.1     FastEthernet0/0
192.168.1.4       1   2WAY/DROTHER    00:00:31    192.168.1.4     FastEthernet0/0

Видим, что с ним у него не Full отношения, а 2Way. Почему не Full? На этом остановлюсь и расскажу про процесс установления соседства. В хорошо работающей сети процесс соседства происходит настолько быстро, что все состояния вы не успеете увидеть. Я только опишу их, для общего понимания:
1) Down — это самый старт, когда маршрутизатор еще не предпринял попытку соседства и ничего в ответ не получает.
2) Init — маршрутизатор переходит в это состояние после отправки Hello-сообщения, до момента получения ответа.
3) 2-WAY — маршрутизатор переходит в это состояние, если получает ответный Hello и видит внутри него свой RID. Это как раз момент установления соседства. В сетях множественного доступа (типа Ethernet) это состояние конечное между «не DR/BDR» маршрутизаторами. Как раз в этом состоянии осталось соседство между Router2 и Router3.
4) ExStart — это состояние выбора DR/BDR. Маршрутизатор с наилучшим RID берет на себя эту роль. Он начинает первым процесс обновления LSDB у всех соседей.
5) Exсhange — состояние, в котором маршрутизаторы отправляют друг другу состояние своих LSDB.
6) Loading — если маршрутизатор видит, что в присланном сообщении есть подсеть, о которой он не знает, он запрашивает информацию о ней. И вот пока запрашиваемая инфа не дойдет до него, он будет висеть в этом состоянии.
7) Full — конечное состояние. Наступает оно в том случае, когда LSDB между соседями синхронизировано.
Стоит упомянуть, что в OSPF есть таймеры соседства. Нужно для того, чтобы узнать жив ли сосед или пора исключить его. Поэтому каждые 10 секунд маршрутизаторы отсылают друг другу Hello-пакеты, чтобы подтвердить свое существование. Если в течении 40 секунд от соседа ничего не поступало, соседство с ним разрывается.
Посмотреть на таймеры и другие параметры интерфейса, на котором включен OSPF, можно командой show ip ospf interface:

Router0#show ip ospf interface 

Loopback1 is up, line protocol is up
  Internet address is 10.1.1.1/24, Area 0
  Process ID 1, Router ID 10.1.1.1, Network Type LOOPBACK, Cost: 1
  Loopback interface is treated as a stub Host
FastEthernet0/0 is up, line protocol is up
  Internet address is 192.168.1.1/24, Area 0
  Process ID 1, Router ID 10.1.1.1, Network Type BROADCAST, Cost: 1
  Transmit Delay is 1 sec, State DR, Priority 1
  Designated Router (ID) 10.1.1.1, Interface address 192.168.1.1
  Backup Designated Router (ID) 10.2.2.1, Interface address 192.168.1.2
  Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
    Hello due in 00:00:00
  Index 2/2, flood queue length 0
  Next 0x0(0)/0x0(0)
  Last flood scan length is 1, maximum is 1
  Last flood scan time is 0 msec, maximum is 0 msec
  Neighbor Count is 3, Adjacent neighbor count is 3
    Adjacent with neighbor 10.2.2.1  (Backup Designated Router)
    Adjacent with neighbor 10.3.3.1
    Adjacent with neighbor 192.168.1.4
  Suppress hello for 0 neighbor(s)

Если интересно, как происходит весь процесс установления соседства, откройте топологию по ссылке. Переключитесь в режим симуляции и перезагрузите один из маршрутизаторов. Все сразу особого смысла нет. Скорее быстрее заглючит CPT, нежели получиться разобраться.

И последнее, что стоит рассмотреть из раздела OSPF — это Multiarea OSPF (или многозонный OSPF).

Теперь есть 3 маршрутизатора. Router0 находится в нулевой зоне, Router1 в 0-ой и 1-ой зоне и Router2 в 1-ой зоне. Конфигурация проста. Я оставлю ее под спойлерами:

Router0

Router0#show running-config
Building configuration…

Current configuration: 734 bytes
!
version 12.4
no service timestamps log datetime msec
no service timestamps debug datetime msec
no service password-encryption
!
hostname Router0
!
!
!
!
!
!
!
!
ip cef
no ipv6 cef
!
!
!
!
!
!
!
!
!
!
!
!
spanning-tree mode pvst
!
!
!
!
!
!
interface Loopback1
ip address 10.1.1.1 255.255.255.0
!
interface FastEthernet0/0
ip address 192.168.1.2 255.255.255.0
duplex auto
speed auto
!
interface FastEthernet0/1
no ip address
duplex auto
speed auto
shutdown
!
interface Vlan1
no ip address
shutdown
!
router ospf 1
log-adjacency-changes
network 192.168.1.0 0.0.0.255 area 0
network 10.1.1.0 0.0.0.255 area 0
!
ip classless
!
ip flow-export version 9
!
!
!
!
!
!
!
line con 0
!
line aux 0
!
line vty 0 4
login
!
!
!
end

Router1

Router1#show running-config
Building configuration…

Current configuration: 693 bytes
!
version 12.4
no service timestamps log datetime msec
no service timestamps debug datetime msec
no service password-encryption
!
hostname Router1
!
!
!
!
!
!
!
!
ip cef
no ipv6 cef
!
!
!
!
!
!
!
!
!
!
!
!
spanning-tree mode pvst
!
!
!
!
!
!
interface FastEthernet0/0
ip address 192.168.1.1 255.255.255.0
duplex auto
speed auto
!
interface FastEthernet0/1
ip address 192.168.2.1 255.255.255.0
duplex auto
speed auto
!
interface Vlan1
no ip address
shutdown
!
router ospf 1
log-adjacency-changes
network 192.168.1.0 0.0.0.255 area 0
network 192.168.2.0 0.0.0.255 area 1
!
ip classless
!
ip flow-export version 9
!
!
!
!
!
!
!
line con 0
!
line aux 0
!
line vty 0 4
login
!
!
!
end

Router2

Router2#show running-config
Building configuration…

Current configuration: 734 bytes
!
version 12.4
no service timestamps log datetime msec
no service timestamps debug datetime msec
no service password-encryption
!
hostname Router2
!
!
!
!
!
!
!
!
ip cef
no ipv6 cef
!
!
!
!
!
!
!
!
!
!
!
!
spanning-tree mode pvst
!
!
!
!
!
!
interface Loopback1
ip address 10.2.2.1 255.255.255.0
!
interface FastEthernet0/0
ip address 192.168.2.2 255.255.255.0
duplex auto
speed auto
!
interface FastEthernet0/1
no ip address
duplex auto
speed auto
shutdown
!
interface Vlan1
no ip address
shutdown
!
router ospf 1
log-adjacency-changes
network 192.168.2.0 0.0.0.255 area 1
network 10.2.2.0 0.0.0.255 area 1
!
ip classless
!
ip flow-export version 9
!
!
!
!
!
!
!
line con 0
!
line aux 0
!
line vty 0 4
login
!
!
!
end

Отличие от предыдущих схем только в том, что для Router1 и Router2 добавляется другой номер зоны, при включении.
Если посмотреть таблицу маршрутизации c Router0:

Router0#show ip route 
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route

Gateway of last resort is not set

     10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
C       10.1.1.0/24 is directly connected, Loopback1
O IA    10.2.2.1/32 [110/3] via 192.168.1.1, 00:09:27, FastEthernet0/0
C    192.168.1.0/24 is directly connected, FastEthernet0/0
O IA 192.168.2.0/24 [110/2] via 192.168.1.1, 00:43:49, FastEthernet0/0

То добавились маршруты OIA (или OSPF inter area). То есть маршрут из другой зоны. Если посмотреть базу:

Router0#show ip ospf database 
            OSPF Router with ID (10.1.1.1) (Process ID 1)

                Router Link States (Area 0)

Link ID         ADV Router      Age         Seq#       Checksum Link count
10.1.1.1        10.1.1.1        861         0x80000006 0x00c679 2
192.168.2.1     192.168.2.1     861         0x80000006 0x00dbc3 1

                Net Link States (Area 0)
Link ID         ADV Router      Age         Seq#       Checksum
192.168.1.1     192.168.2.1     953         0x80000002 0x009931

                Summary Net Link States (Area 0)
Link ID         ADV Router      Age         Seq#       Checksum
192.168.2.0     192.168.2.1     947         0x80000003 0x00a7dc
10.2.2.1        192.168.2.1     851         0x80000004 0x00bc22

Здесь появился Summary LSA или Type3. Его генерирует маршрутизатор, который находится на границе двух зон. Такой маршрутизатор называют пограничным или ABR (от англ. Area Border Gateway).
Если посмотреть на него поглубже:

Router0#show ip ospf database  summary 

            OSPF Router with ID (10.1.1.1) (Process ID 1)

                Summary Net Link States (Area 0)

  LS age: 1146
  Options: (No TOS-capability, DC, Upward)
  LS Type: Summary Links(Network)
  Link State ID: 192.168.2.0 (summary Network Number)
  Advertising Router: 192.168.2.1
  LS Seq Number: 80000003
  Checksum: 0xa7dc
  Length: 28
  Network Mask: /24
        TOS: 0  Metric: 1

  LS age: 1050
  Options: (No TOS-capability, DC, Upward)
  LS Type: Summary Links(Network)
  Link State ID: 10.2.2.1 (summary Network Number)
  Advertising Router: 192.168.2.1
  LS Seq Number: 80000004
  Checksum: 0xbc22
  Length: 28
  Network Mask: /32
        TOS: 0  Metric: 2

То можно заметить, что анонсирует его 192.168.2.1 (это RID Router1).
Если же посмотреть на таблицу маршрутизации со стороны ABR (т.е. Router1):

Router1#show ip route 
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route

Gateway of last resort is not set

     10.0.0.0/32 is subnetted, 2 subnets
O       10.1.1.1 [110/2] via 192.168.1.2, 00:20:49, FastEthernet0/0
O       10.2.2.1 [110/2] via 192.168.2.2, 00:20:44, FastEthernet0/1
C    192.168.1.0/24 is directly connected, FastEthernet0/0
C    192.168.2.0/24 is directly connected, FastEthernet0/1

То для него все маршруты помечены O. Все потому что он находится в обеих зонах и для него они локальны.
А если посмотреть базу:

Router1#show ip ospf database 
            OSPF Router with ID (192.168.2.1) (Process ID 1)

                Router Link States (Area 0)

Link ID         ADV Router      Age         Seq#       Checksum Link count
192.168.2.1     192.168.2.1     1326        0x80000006 0x00dbc3 1
10.1.1.1        10.1.1.1        1326        0x80000006 0x00c679 2

                Net Link States (Area 0)
Link ID         ADV Router      Age         Seq#       Checksum
192.168.1.1     192.168.2.1     1417        0x80000002 0x009931

                Summary Net Link States (Area 0)
Link ID         ADV Router      Age         Seq#       Checksum
192.168.2.0     192.168.2.1     1412        0x80000003 0x00a7dc
10.2.2.1        192.168.2.1     1316        0x80000004 0x00bc22

                Router Link States (Area 1)

Link ID         ADV Router      Age         Seq#       Checksum Link count
192.168.2.1     192.168.2.1     1326        0x80000005 0x00f3aa 1
10.2.2.1        10.2.2.1        1326        0x80000005 0x006ccc 2

                Net Link States (Area 1)
Link ID         ADV Router      Age         Seq#       Checksum
192.168.2.1     192.168.2.1     1371        0x80000002 0x0049d0

                Summary Net Link States (Area 1)
Link ID         ADV Router      Age         Seq#       Checksum
192.168.1.0     192.168.2.1     1413        0x80000003 0x00b2d2
10.1.1.1        192.168.2.1     1322        0x80000005 0x00d10e

То тут их больше. Все потому, что у него представлены эти LSA на каждую зону, а также он генерирует Type3 в обе стороны. Для самостоятельного ознакомления лабу можно скачать по данной ссылке.

Таким образом OSPF можно делить на зоны. То есть маршрутизатор видит соседей в своей зоне и просчитывает лучший путь сам. А вот межзоннные маршруты (Type3) диктует ABR. Поэтому на границу чаще ставят производительные маршрутизаторы. На самом деле EIGRP и OSPF уж очень много всего умеют. И заслуживают отдельных статей. Более подробно они разбираются уже в топиках CCNP. Так что для основ достаточно.
В итоге мы разобрались с маршрутизацией и встает вопрос: что использовать? Однозначного ответа тут нет. Если у вас вся сеть построена на цисках, то можно выбирать EIGRP. Если у вас сеть мультивендорная, то тут однозначно OSPF. Да, циска вроде как открыла стандарт, но относительно старые железки (не циски) не получат поддержку этого протокола, да и не на всех новых его внедрят. Более того, могу сказать, что даже в сетях построенных исключительно на цисках, выбирают OSPF. Аргументируя это тем, что OSPF более гибок в настройке, нежели EIGRP. Да и нельзя быть уверенным, что в какой то момент придется ставить сетевое устройство другого вендора. А значит внедрение такого устройства пройдет безболезненно и без перенастройки всей сети.

Подводя итоги, можно сказать, что это самая долгая статья из всех, что я писал. Все потому, что писал я ее больше 2-х лет. Постоянно что-то стопорило ее написание, а когда садился, то не мог сконцентрироваться и написать больше 2-х предложений. Но теперь она написана и можно спокойно выдохнуть. Ее как раз не хватало для основ компьютерных сетей, ведь предыдущие статьи концентрировались в большинстве на L2 уровне. Столь длительное написание привело к тому, что циска уже меняет программу своего экзамена. А значит некоторые темы, которые я хотел далее осветить, уже не актуальны. Поэтому я уберу из содержания будущие темы и буду выкладывать статьи, исходя из актуальности.

Спасибо всем, кто ждал статью и интересовался.

  • Rt n12 доступ к роутеру через интернет
  • Router beeline ru настройка роутера tp link
  • Rx 22200 роутер дом ру настройка на другой провайдер
  • Ra сервис роутер что это
  • Reset на вай фай роутере