A note to Cygwin and MinGW users
If you plan to use your tools from the Windows command prompt,
you’re in the right place. If you plan to build from the Cygwin
bash shell, you’re actually running on a POSIX platform and
should follow the instructions for getting started on Unix
variants. Other command shells, such as MinGW’s MSYS, are
not supported—they may or may not work.
Index
- 1 Get Boost
- 2 The Boost Distribution
- 3 Header-Only Libraries
- 4 Build a Simple Program Using Boost
- 4.1 Build From the Visual Studio IDE
- 4.2 Or, Build From the Command Prompt
- 4.3 Errors and Warnings
- 5 Prepare to Use a Boost Library Binary
- 5.1 Simplified Build From Source
- 5.2 Or, Build Binaries From Source
- 5.2.1 Install Boost.Build
- 5.2.2 Identify Your Toolset
- 5.2.3 Select a Build Directory
- 5.2.4 Invoke b2
- 5.3 Expected Build Output
- 5.4 In Case of Build Errors
- 6 Link Your Program to a Boost Library
- 6.1 Link From Within the Visual Studio IDE
- 6.2 Or, Link From the Command Prompt
- 6.3 Library Naming
- 6.4 Test Your Program
- 7 Conclusion and Further Resources
2 The Boost Distribution
This is a sketch of the resulting directory structure:
boost_1_82_0\ .................The “boost root directory” index.htm .........A copy of www.boost.org starts here boost\ .........................All Boost Header files lib\ .....................precompiled library binaries libs\ ............Tests, .cpps, docs, etc., by library index.html ........Library documentation starts here algorithm\ any\ array\ …more libraries… status\ .........................Boost-wide test suite tools\ ...........Utilities, e.g. Boost.Build, quickbook, bcp more\ ..........................Policy documents, etc. doc\ ...............A subset of all Boost library docs
It’s important to note the following:
-
The path to the boost root directory (often C:\Program Files\boost\boost_1_82_0) is
sometimes referred to as $BOOST_ROOT in documentation and
mailing lists . -
To compile anything in Boost, you need a directory containing
the boost\ subdirectory in your #include path. Specific steps for setting up #include
paths in Microsoft Visual Studio follow later in this document;
if you use another IDE, please consult your product’s
documentation for instructions. -
Since all of Boost’s header files have the .hpp extension,
and live in the boost\ subdirectory of the boost root, your
Boost #include directives will look like:#include <boost/whatever.hpp>
or
#include "boost/whatever.hpp"
depending on your preference regarding the use of angle bracket
includes. Even Windows users can (and, for
portability reasons, probably should) use forward slashes in
#include directives; your compiler doesn’t care. -
Don’t be distracted by the doc\ subdirectory; it only
contains a subset of the Boost documentation. Start with
libs\index.html if you’re looking for the whole enchilada.
4 Build a Simple Program Using Boost
To keep things simple, let’s start by using a header-only library.
The following program reads a sequence of integers from standard
input, uses Boost.Lambda to multiply each number by three, and
writes them to standard output:
#include <boost/lambda/lambda.hpp> #include <iostream> #include <iterator> #include <algorithm> int main() { using namespace boost::lambda; typedef std::istream_iterator<int> in; std::for_each( in(std::cin), in(), std::cout << (_1 * 3) << " " ); }
Copy the text of this program into a file called example.cpp.
4.1 Build From the Visual Studio IDE
-
From Visual Studio’s File menu, select New > Project…
-
In the left-hand pane of the resulting New Project dialog,
select Visual C++ > Win32. -
In the right-hand pane, select Win32 Console Application
(VS8.0) or Win32 Console Project (VS7.1). -
In the name field, enter “example”
-
Right-click example in the Solution Explorer pane and
select Properties from the resulting pop-up menu -
In Configuration Properties > C/C++ > General > Additional Include
Directories, enter the path to the Boost root directory, for exampleC:\Program Files\boost\boost_1_82_0
-
In Configuration Properties > C/C++ > Precompiled Headers, change
Use Precompiled Header (/Yu) to Not Using Precompiled
Headers.2 -
Replace the contents of the example.cpp generated by the IDE
with the example code above. -
From the Build menu, select Build Solution.
To test your application, hit the F5 key and type the following
into the resulting window, followed by the Return key:
1 2 3
Then hold down the control key and press «Z», followed by the
Return key.
skip to the next step
4.2 Or, Build From the Command Prompt
From your computer’s Start menu, if you are a Visual
Studio 2005 user, select
All Programs > Microsoft Visual Studio 2005
> Visual Studio Tools > Visual Studio 2005 Command Prompt
or, if you’re a Visual Studio .NET 2003 user, select
All Programs > Microsoft Visual Studio .NET 2003
> Visual Studio .NET Tools > Visual Studio .NET 2003 Command Prompt
to bring up a special command prompt window set up for the
Visual Studio compiler. In that window, set the current
directory to a suitable location for creating some temporary
files and type the following command followed by the Return key:
cl /EHsc /I path\to\boost_1_82_0 path\to\example.cpp
To test the result, type:
echo 1 2 3 | example
4.3 Errors and Warnings
Don’t be alarmed if you see compiler warnings originating in Boost
headers. We try to eliminate them, but doing so isn’t always
practical.4 Errors are another matter. If you’re
seeing compilation errors at this point in the tutorial, check to
be sure you’ve copied the example program correctly and that you’ve
correctly identified the Boost root directory.
5 Prepare to Use a Boost Library Binary
If you want to use any of the separately-compiled Boost libraries,
you’ll need to acquire library binaries.
5.1 Simplified Build From Source
If you wish to build from source with Visual C++, you can use a
simple build procedure described in this section. Open the command prompt
and change your current directory to the Boost root directory. Then, type
the following commands:
bootstrap .\b2
The first command prepares the Boost.Build system for use. The second
command invokes Boost.Build to build the separately-compiled Boost
libraries. Please consult the Boost.Build documentation for a list
of allowed options.
5.2 Or, Build Binaries From Source
If you’re using an earlier version of Visual C++, or a compiler
from another vendor, you’ll need to use Boost.Build to create your
own binaries.
5.2.1 Install Boost.Build
Boost.Build is a text-based system for developing, testing, and
installing software. First, you’ll need to build and
install it. To do this:
- Go to the directory tools\build\.
- Run bootstrap.bat
- Run b2 install —prefix=PREFIX where PREFIX is
the directory where you want Boost.Build to be installed - Add PREFIX\bin to your PATH environment variable.
5.2.3 Select a Build Directory
Boost.Build will place all intermediate files it generates while
building into the build directory. If your Boost root
directory is writable, this step isn’t strictly necessary: by
default Boost.Build will create a bin.v2/ subdirectory for that
purpose in your current working directory.
5.2.4 Invoke b2
Change your current directory to the Boost root directory and
invoke b2 as follows:
b2 --build-dir=build-directory toolset=toolset-name --build-type=complete stage
For a complete description of these and other invocation options,
please see the Boost.Build documentation.
For example, your session might look like this:3
C:\WINDOWS> cd C:\Program Files\boost\boost_1_82_0 C:\Program Files\boost\boost_1_82_0> b2 ^ More? --build-dir="C:\Documents and Settings\dave\build-boost" ^ More? --build-type=complete msvc stage
Be sure to read this note about the appearance of ^,
More? and quotation marks («) in that line.
The option “—build-type=complete” causes Boost.Build to build
all supported variants of the libraries. For instructions on how to
build only specific variants, please ask on the Boost Users’ mailing
list.
Building the special stage target places Boost
library binaries in the stage\lib\ subdirectory of
the Boost tree. To use a different directory pass the
—stagedir=directory option to b2.
Note
b2 is case-sensitive; it is important that all the
parts shown in bold type above be entirely lower-case.
For a description of other options you can pass when invoking
b2, type:
b2 --help
In particular, to limit the amount of time spent building, you may
be interested in:
- reviewing the list of library names with —show-libraries
- limiting which libraries get built with the —with-library-name or —without-library-name options
- choosing a specific build variant by adding release or
debug to the command line.
Note
Boost.Build can produce a great deal of output, which can
make it easy to miss problems. If you want to make sure
everything is went well, you might redirect the output into a
file by appending “>build.log 2>&1” to your command line.
5.3 Expected Build Output
During the process of building Boost libraries, you can expect to
see some messages printed on the console. These may include
-
Notices about Boost library configuration—for example, the Regex
library outputs a message about ICU when built without Unicode
support, and the Python library may be skipped without error (but
with a notice) if you don’t have Python installed. -
Messages from the build tool that report the number of targets
that were built or skipped. Don’t be surprised if those numbers
don’t make any sense to you; there are many targets per library. -
Build action messages describing what the tool is doing, which
look something like:toolset-name.c++ long/path/to/file/being/built
-
Compiler warnings.
5.4 In Case of Build Errors
The only error messages you see when building Boost—if any—should
be related to the IOStreams library’s support of zip and bzip2
formats as described here. Install the relevant development
packages for libz and libbz2 if you need those features. Other
errors when building Boost libraries are cause for concern.
If it seems like the build system can’t find your compiler and/or
linker, consider setting up a user-config.jam file as described
here. If that isn’t your problem or the user-config.jam file
doesn’t work for you, please address questions about configuring Boost
for your compiler to the Boost Users’ mailing list.
6 Link Your Program to a Boost Library
To demonstrate linking with a Boost binary library, we’ll use the
following simple program that extracts the subject lines from
emails. It uses the Boost.Regex library, which has a
separately-compiled binary component.
#include <boost/regex.hpp> #include <iostream> #include <string> int main() { std::string line; boost::regex pat( "^Subject: (Re: |Aw: )*(.*)" ); while (std::cin) { std::getline(std::cin, line); boost::smatch matches; if (boost::regex_match(line, matches, pat)) std::cout << matches[2] << std::endl; } }
There are two main challenges associated with linking:
- Tool configuration, e.g. choosing command-line options or IDE
build settings. - Identifying the library binary, among all the build variants,
whose compile configuration is compatible with the rest of your
project.
Auto-Linking
Most Windows compilers and linkers have so-called “auto-linking
support,” which eliminates the second challenge. Special code in
Boost header files detects your compiler options and uses that
information to encode the name of the correct library into your
object files; the linker selects the library with that name from
the directories you’ve told it to search.
The GCC toolchains (Cygwin and MinGW) are notable exceptions;
GCC users should refer to the linking instructions for Unix
variant OSes for the appropriate command-line options to use.
6.1 Link From Within the Visual Studio IDE
Starting with the header-only example project we created
earlier:
- Right-click example in the Solution Explorer pane and
select Properties from the resulting pop-up menu - In Configuration Properties > Linker > Additional Library
Directories, enter the path to the Boost binaries,
e.g. C:\Program Files\boost\boost_1_82_0\lib\. - From the Build menu, select Build Solution.
skip to the next step
6.2 Or, Link From the Command Prompt
For example, we can compile and link the above program from the
Visual C++ command-line by simply adding the bold text below to
the command line we used earlier, assuming your Boost binaries are
in C:\Program Files\boost\boost_1_82_0\lib:
cl /EHsc /I path\to\boost_1_82_0 example.cpp ^ /link /LIBPATH:C:\Program Files\boost\boost_1_82_0\lib
6.3 Library Naming
Note
If, like Visual C++, your compiler supports auto-linking,
you can probably skip to the next step.
In order to choose the right binary for your build configuration
you need to know how Boost binaries are named. Each library
filename is composed of a common sequence of elements that describe
how it was built. For example,
libboost_regex-vc71-mt-d-x86-1_34.lib can be broken down into the
following elements:
- lib
- Prefix: except on Microsoft Windows, every Boost library
name begins with this string. On Windows, only ordinary static
libraries use the lib prefix; import libraries and DLLs do
not.5 - boost_regex
- Library name: all boost library filenames begin with boost_.
- -vc71
- Toolset tag: identifies the toolset and version used to build
the binary. - -mt
- Threading tag: indicates that the library was
built with multithreading support enabled. Libraries built
without multithreading support can be identified by the absence
of -mt. - -d
-
ABI tag: encodes details that affect the library’s
interoperability with other compiled code. For each such
feature, a single letter is added to the tag:Key Use this library when: Boost.Build option s linking statically to the C++ standard library and compiler runtime support
libraries.runtime-link=static g using debug versions of the standard and runtime support libraries. runtime-debugging=on y using a special debug build of Python. python-debugging=on d building a debug version of your code.6 variant=debug p using the STLPort standard library rather than the default one supplied with
your compiler.stdlib=stlport For example, if you build a debug version of your code for use
with debug versions of the static runtime library and the
STLPort standard library,
the tag would be: -sgdp. If none of the above apply, the
ABI tag is ommitted. - -x86
-
Architecture and address model tag: in the first letter, encodes the architecture as follows:
Key Architecture Boost.Build option x x86-32, x86-64 architecture=x86 a ARM architecture=arm i IA-64 architecture=ia64 s Sparc architecture=sparc m MIPS/SGI architecture=mips* p RS/6000 & PowerPC architecture=power The two digits following the letter encode the address model as follows:
Key Address model Boost.Build option 32 32 bit address-model=32 64 64 bit address-model=64 - -1_34
- Version tag: the full Boost release number, with periods
replaced by underscores. For example, version 1.31.1 would be
tagged as «-1_31_1». - .lib
- Extension: determined according to the operating system’s usual
convention. On most unix-style platforms the extensions are
.a and .so for static libraries (archives) and shared
libraries, respectively. On Windows, .dll indicates a shared
library and .lib indicates a
static or import library. Where supported by toolsets on unix
variants, a full version extension is added (e.g. «.so.1.34») and
a symbolic link to the library file, named without the trailing
version number, will also be created.
6.4 Test Your Program
To test our subject extraction, we’ll filter the following text
file. Copy it out of your browser and save it as jayne.txt:
To: George Shmidlap From: Rita Marlowe Subject: Will Success Spoil Rock Hunter? --- See subject.
Now, in a command prompt window, type:
path\to\compiled\example < path\to\jayne.txt
The program should respond with the email subject, “Will Success
Spoil Rock Hunter?”
7 Conclusion and Further Resources
This concludes your introduction to Boost and to integrating it
with your programs. As you start using Boost in earnest, there are
surely a few additional points you’ll wish we had covered. One day
we may have a “Book 2 in the Getting Started series” that addresses
them. Until then, we suggest you pursue the following resources.
If you can’t find what you need, or there’s anything we can do to
make this document clearer, please post it to the Boost Users’
mailing list.
- Boost.Build reference manual
- Boost Users’ mailing list
- Index of all Boost library documentation
Onward
Good luck, and have fun!
—the Boost Developers
[1] | We recommend downloading boost_1_82_0.7z and using 7-Zip to decompress it. We no longer recommend .zip files for Boost because they are twice as large as the equivalent .7z files. We don’t recommend using Windows’ built-in decompression as it can be painfully slow for large archives. |
[2] | There’s no problem using Boost with precompiled headers; these instructions merely avoid precompiled headers because it would require Visual Studio-specific changes to the source code used in the examples. |
[3] |
In this example, the caret character ^ is a The command prompt treats each bit of whitespace in the command --build-dir="C:\Documents_and_Settings\dave\build-boost" Also, for example, you can’t add spaces around the = sign as in --build-dir_=_"C:\Documents and Settings\dave\build-boost" |
[4] | Remember that warnings are specific to each compiler implementation. The developer of a given Boost library might not have access to your compiler. Also, some warnings are extremely difficult to eliminate in generic code, to the point where it’s not worth the trouble. Finally, some compilers don’t have any source code mechanism for suppressing warnings. |
[5] | This convention distinguishes the static version of a Boost library from the import library for an identically-configured Boost DLL, which would otherwise have the same name. |
[6] | These libraries were compiled without optimization or inlining, with full debug symbols enabled, and without NDEBUG #defined. Although it’s true that sometimes these choices don’t affect binary compatibility with other compiled code, you can’t count on that with Boost libraries. |
Boost library is a set of a popular collection of peer-reviewed, free, open-source C++ libraries. It supports a number of tasks such as unit testing, image processing, multithreading, and mathematical aspects such as linear algebra and regular expressions. You can also store, numbers that are out of range of long long, or double. It was first made available on September 1st, 1999. There are 164 different libraries in it. In this article, we will learn, how to install the boost library in C++ on Windows.
Installing Boost Library in C++ on Windows:
Step 1: Go to Boost.org. Click on the Downloads option on the right side.
Step 2: Click on the boost_1_72_0.zip file, to download the required boost library. It has an approx. size of 200MB.
Step 3: Now, open the location where your zip file is downloaded. For example: This PC > Local Disk (C:) > Users > jh > Downloads > .
Step 4: Select the zip file. Right-Click on it, and select Extract All…
Step 5: The files get extracted at the same location, with the same folder name. Now, go to Program Files, and create a new folder name Boost.
Step 6: Now, copy the extracted folder boost_1_72_0 into the boost folder. Hence, the boost library is installed into our system.
Verify the Installation of the Boost Library in C++
The successful compilation of the code will prove that the boost library is installed in windows.
C++
#include <boost/array.hpp>
#include <iostream>
using
namespace
std;
int
main()
{
boost::array<
int
, 10> arr
= { { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 } };
for
(
int
i = 0; i < 10; i++) {
cout <<
"Geek Rank is :"
<< arr[i] <<
"*"
<<
"\n"
;
}
return
0;
}
Output:
Geek Rank is :1* Geek Rank is :2* Geek Rank is :3* Geek Rank is :4* Geek Rank is :5* Geek Rank is :6* Geek Rank is :7* Geek Rank is :8* Geek Rank is :9* Geek Rank is :10*
Last Updated :
16 Oct, 2022
Like Article
Save Article
Библиотека boost — это набор частично компилируемых исходных кодов. В некоторых случаях ничего не нужно собирать, достаточно скачать с официального сайта дистрибутив, разместить в удобном месте и в настройках проекта указать пути.
У меня в специальной папке, где я храню библиотеки многоразового использования, лежит подпапка boost_1_56_0
. Рядом с нею еще ряд других более старых версий этой библиотеки.
В переменные среды (в windows это там же, где и PATH) я заношу переменную BOOST_ROOT
, которая указывает на последнюю сборку. Т.е. как появится новая, я создам папку boost_1_XX_Y
и переназначу эту переменную.
В настройках любых проектов мне достаточно указать $(BOOST_ROOT)\include — для доступа к headers, и $(BOOST_ROOT)\stage\lib32
/ $(BOOST_ROOT)\stage\lib64
для доступа к конкретным библиотекам, нужной мне разрядности.
Поскольку boost автоматически выдает имена собираемым библиотекам, с учетом компиляторов, которыми они собираются, даже если у Вас разные компиляторы, бинарники удобно сбрасывать в одну папку, как указано выше.
- С Intel Compiler у Вас получатся
libboost_name-iw-type-version.lib
. - С Visual Studio у Вас получатся
libboost_name-vcXX-type-version.lib
, где XX — версия компилятора visual studio (не студии, а именно компилятора). - С MinGW с gcc у Вас получится
libboost_name-gcc-type-version.lib
, если мне не изменяет память.
При этом для сборки библиотек, которые необходимо собирать, необходимо выполнить одни и те же действия в консоли:
- Для Intel Compiler это будет в соответствующем Command Prompt.
- Для Visual Studio это будет в соответствующем Command Prompt.
- Для MinGW это будет в обычной консоли, если, конечно, путь к bin в MinGW у Вас добавлен в переменную среды PATH.
Действия надо выполнить одни и те же. Сначала bootstrap.bat
, а потом b2 --help
.
В хелпе b2 Вы увидите все варианты настройки сборки, чтобы собрать наиболее удобным Вам образом.
Строчка будет выглядеть так:
b2 параметр1 параметр2 параметр3 …
- toolset — его стоит указать, чтобы сборка производилась конкретным компилятором (gcc, intel, visual studio), причем можно указать и версию компилятора.
- variant, вид сборки, debug или release. Для разработки Вам понадобятся оба варианта.
- link — Вы выбираете, будет Ваш бинарный код обращаться в dll или содержать «в себе» все используемые алгоритмы.
- threading — честно говоря, плохо понимаю смысл этой директивы и всегда указываю multi. Редко мы пишем однопоточные приложения.
- runtime-link — то же, что и link, только для рантайма.
- address-model — параметр не указан в хелпе, но помогает выбрать архитектуру собираемых библиотек.
- stage/install, отличаются лишь тем, что install позволит «выгрузить» только нужное в отдельную папку, stage собирает всё туда, где оно есть. Если Вы не увлекаетесь изменениями исходников boost, stage Вам вполне подойдет.
В итоге получается что-то вроде вот такого:
b2 toolset=vc120 variant=debug link=shared threading=multi runtime-link=shared address-model=32 stage
Для дебага в x32 и такого:
b2 toolset=vc120 variant=release link=static threading=multi runtime-link=shared address-model=32 stage
Для релиза в x32.
Ждете около 40 минут, радуетесь результату. В случае проблем — гуглите, скорее всего уже тысячи людей сталкивались с Вашей проблемой, и ее решение — невнимательность или какие-то специфические настройки чего-нибудь. Например, при сборке boost python вылезает много warning-ов на MinGW из-за конфликта хедеров, подобные вещи можно разрулить в частном порядке.
Потратив 2 часа на то, чтобы один раз в этом разобраться, Вы никогда не будете зависеть ни от каких сторонних сборок, будете понимать, где у Вас что лежит, кто туда положил и т.п. В общем, это полезно.
ЗЫ: Command Prompt находится в Visual Studio Tools. Или посмотрите в VStudio_PATH\CommonXX\Tools\VsDevCmd.bat
Introduction
Boost is easy when you are using headers or pre-compiled binaries for visual studio, but it can be a pain to compile from source on windows, especially when you want the 64-bit version of MinGW to use gcc/g++. This installation process should be thorough enough to simply copy and paste commands, but robust enough to install everything you need.
Note: if you need to install any of the libraries that need dependencies, see this great answer from stack overflow
Get files needed for install
Get the MinGW installer mingw-w64-install.exe from Sourceforge
Get the boost_1_68_0.zip source from Sourceforge
Note: This should work perfectly with other versions of boost as well
Copy these to a new folder
C:\install
It should now contain the following two files
mingw-w64-install.exe
boost_1_68_0.zip
Install MinGW-w64
Run the installer
Run mingw-w64-install.exe
Click next
Change the Architecture from i868
to x86_64
Click next and keep the default install location
Click next to start the install
Click Finish to exit the installer
After the install, add a hard link (junction) to the folder
Open a command prompt AS ADMIN
- windows key -> type «cmd»
- right click «command prompt»
- Run as administrator
Enter the following command to create a link to MinGW folder in C:\
mklink /J C:\MinGW "C:\Program Files\mingw-w64\x86_64-8.1.0-posix-seh-rt_v6-rev0\mingw64"
Add MinGW to the system PATH
Add this to the session and system PATH environment variable
set PATH=%PATH%;C:\MinGW\bin
setx /M PATH "%PATH%"
Check to ensure proper install
g++ --version
should return the following info
Install boost
Navigate to install
cd C:\install
unzip to «install/boost_1_68_0»
powershell -command "Expand-Archive C:\install\boost_1_68_0.zip C:\install"
This takes about 15 minutes
cd C:\install\boost_1_68_0
Make directories for building and install
mkdir C:\boost-build
mkdir C:\install\boost_1_68_0\boost-build
mkdir C:\boost
Boost.Build setup
cd C:\install\boost_1_68_0\tools\build
prepare b2
bootstrap.bat gcc
Build boost.build with b2
b2 --prefix="C:\boost-build" install
Add C:\boost-build\bin to your session PATH variable
set PATH=%PATH%;C:\boost-build\bin
Building Boost
navigate back up to the boost unzipped root directory
cd C:\install\boost_1_68_0
Build boost with b2
b2 --build-dir="C:\install\boost_1_68_0\build" --build-type=complete --prefix="C:\boost" toolset=gcc install
This is going to take awhile, so try to run this command right before beginning the director’s cut of Lord of the Ring Return of the King.
When this is done you should see the following output
You can now delete «C:\install» and «C:\boost-build»
Adding to projects
Everything should now be installed
Include folder:
C:\boost\include\boost-1_68
Linker folder:
C:\boost\lib
Link required libraries:
e.g. libboost_atomic-mgw81-mt-d-x64-1_68.a
Приветствую! Составил небольшую заметку по настройке и статической линковке библиотеки Boost с помощью CMake под Windows. Boost представляет собой набор библиотек на языке C++ с широким функционалом и является в некотором роде полигоном для апробирования некоторых идей, которые затем попадают в новые стандарты языка С++. Для установки и настройки CMake проекта прошу под кат!
1. Скачивание и подготовка библиотеки
Скачайте библиотеку по адресу https://www.boost.org/users/download/ и распакуйте архив, например, в директорию C:/Boost. Затем перейдите в директорию и запустите файл bootstrap.bat, дождитесь окончания его работы. После этого запустите b2.exe и дождитесь окончания его работы. b2.exe осуществляет компиляцию исходного кода библиотек и у меня этот процесс занял более получаса. Точнее сказать не могу, так как оставил его работать и лёг спать, утром всё было готово.
2. Настройка CMake
Для подключения библиотеки Boost к вашему проекту добавьте следующие строки в CMakeLists.txt.
set (BOOST_ROOT "C:/boost_1_78_0/") # Путь к библиотеке Boost set (CMAKE_CXX_STANDARD 20) set (Boost_NO_SYSTEM_PATHS ON) set (Boost_USE_MULTITHREADED ON) set (Boost_USE_STATIC_LIBS ON) set (Boost_USE_STATIC_RUNTIME OFF) set (BOOST_ALL_DYN_LINK OFF) # Подключаем необходимые модули. Для примера подключим program_options find_package (Boost REQUIRED COMPONENTS program_options REQUIRED) # Если библиотека найдена, то if (Boost_FOUND) include_directories (SYSTEM ${Boost_INCLUDE_DIR}) # подключаем заголовочные файлы add_executable (Boost_test "main.cpp") # Создаем исполняемый файл для нашего проекта target_link_libraries (Boost_test ${Boost_LIBRARIES}) # подключаем библиотеку endif ()
Обратите внимание на строку 16 – мы создаем исполняемый файл нашего проекта только в том случае, если библиотека найдена. Это условие не обязательно, но если вы работаете, например, в Visual Studio, то в случае отсутствия библиотеки, студия не будет отображать доступную к запуску цель, но и ошибки при компиляции не выдаст тоже. Использовать ли это условие или нет – выбор за вами.
Boost в действии
Давайте теперь для примера добавим в проект файл main.cpp со следующим кодом, взятым из примера работы с компонентом program_options библиотеки Boost:
#include <iostream> #include <boost/program_options.hpp> using namespace std; namespace po = boost::program_options; int main(int argc, char* argv[]) { po::options_description desc("Allowed options"); int c; desc.add_options() ("help,h", "produce help message") ("compression,c", po::value<int>()->default_value(3), "set compression level") ; po::variables_map vm; po::store(po::parse_command_line(argc, argv, desc), vm); po::notify(vm); if (vm.count("help")) { cout << desc << "\n"; return 1; } if (vm.count("compression")) { cout << "Compression level was set to " << vm["compression"].as<int>() << ".\n"; } else { cout << "Compression level was not set.\n"; } return 0; }
Program_options является обработчиком параметров командной строки и предоставляет удобный интерфейс для работы. В рассмотренном фрагменте создается экземпляр объекта program_options desc и устанавливается заголовок для отображения справки. Справка будет вызываться параметром –help или -h. Далее регистрируются доступные параметры, с указанием через запятую полной и укороченной версии и описания команды. Укороченная версия параметров не является обязательной и может быть опущена. Для параметра compression устанавливается значение по умолчанию = 3. Далее идёт обработка введённых параметров.
П.с. из-за установленного значения по умолчанию код в строке 30 никогда не выполняется.
Скомпилируйте программу и запустите её передавая следующие комбинации:
- Boost_test.exe
- Boost_test.exe -c 5
- Boost_test.exe -h
- Boost_test.exe –help
Справка о доступных параметров будет выглядеть так: