Java gateway process exited before sending its port number pyspark windows

I am using Pyspark to run some commands in Jupyter Notebook but it is throwing error. I tried solutions provided in this link (Pyspark: Exception: Java gateway process exited before sending the driver its port number)
and I tried doing the solution provided here (such as Changing the path to C:Java, Uninstalling Java SDK 10 and reinstalling Java 8, still it is throwing me the same error.

I tried uninstalling and reinstalling pyspark, and I tried running from anaconda prompt as well still I am getting the same error. I am using Python 3.7 and pyspark version is 2.4.0.

If I use this code, I get this error.»Exception: Java gateway process exited before sending its port number».

from pyspark import SparkContext
from pyspark.sql import SQLContext
sc = SparkContext() 
sqlContext = SQLContext(sc)
from pyspark.mllib.linalg import Vector, Vectors
from nltk.stem.wordnet import WordNetLemmatizer
from pyspark.ml.feature import RegexTokenizer, StopWordsRemover, Word2Vec

But If I remove sparkcontext from this code runs fine, but I would need spark context for my solution. Below code without spark context does not throw any error.

from pyspark import SparkContext
from pyspark.sql import SQLContext
from pyspark.mllib.linalg import Vector, Vectors
from nltk.stem.wordnet import WordNetLemmatizer
from pyspark.ml.feature import RegexTokenizer, StopWordsRemover, Word2Vec

I would appreciate if I could get any help figuring this out. I am using Windows 10 64 bit operating system.

Here is full error code picture.

enter image description here

Problem: While running PySpark application through spark-submit, Spyder or even from PySpark shell I am getting Pyspark: Exception: Java gateway process exited before sending the driver its port number.

In order to run PySpark (Spark with Python) you would need to have Java installed on your Mac, Linux or Windows, without Java installation & not having JAVA_HOME environment variable set with Java installation path or not having PYSPARK_SUBMIT_ARGS, you would get Exception: Java gateway process exited before sending the driver its port number.

Set PYSPARK_SUBMIT_ARGS

Set PYSPARK_SUBMIT_ARGS with master, this resolves Exception: Java gateway process exited before sending the driver its port number.


export PYSPARK_SUBMIT_ARGS="--master local[3] pyspark-shell"

vi ~/.bashrc , add the above line and reload the bashrc file using source ~/.bashrc

Incase if issue still doesn’t resolve, check your Java installation and JAVA_HOME environment variable.

Install Open JDK

Why you need Java to run PySpark?

Spark basically written in Scala and later on due to its industry adaptation it’s API PySpark released for Python using Py4J. Py4J is a Java library that is integrated within PySpark and allows python to dynamically interface with JVM objects, hence to run PySpark you also need Java to be installed along with Python, and Apache Spark.

Use below commands to install OpenJDK or Oracle JDK on Linux Ubuntu.


# To Install Open JDK
sudo add-apt-repository ppa:openjdk-r/ppa
sudo apt-get update
sudo apt-get install openjdk-11-jdk

# To Install Oracke JDK varsion 8
sudo add-apt-repository ppa:webupd8team/java
sudo apt-get update
sudo apt-get install oracle-java8-installer

Set JAVA_HOME Environment Variable

Now export JAVA_HOME with the java installation directory.


export JAVA_HOME=/usr/lib/jvm/java-11-openjdk-amd64

vi ~/.bashrc , add the above line and reload the bashrc file using source ~/.bashrc

Happy Learning

Related Articles

  • PySpark “ImportError: No module named py4j.java_gateway” Error
  • How to Import PySpark in Python Script
  • PySpark install on Windows
  • PySpark NOT isin() or IS NOT IN Operator
  • PySpark alias() Column & DataFrame Examples
  • Fonctions filter where en PySpark | Conditions Multiples

Post author avatar

Naveen (NNK)

I am Naveen (NNK) working as a Principal Engineer. I am a seasoned Apache Spark Engineer with a passion for harnessing the power of big data and distributed computing to drive innovation and deliver data-driven insights. I love to design, optimize, and managing Apache Spark-based solutions that transform raw data into actionable intelligence. I am also passion about sharing my knowledge in Apache Spark, Hive, PySpark, R etc.

If you’re a data scientist working with PySpark, you might have encountered the error message: ‘Java gateway process exited before sending its port number’. This error can be frustrating, especially when you’re in the middle of a critical data processing task. In this blog post, we’ll explore the causes of this error and provide solutions to help you get back on track.

⚠ content generated by AI for experimental purposes only

Troubleshooting PySpark Error: Java Gateway Process Exited Before Sending Its Port Number

If you’re a data scientist working with PySpark, you might have encountered the error message: “Java gateway process exited before sending its port number”. This error can be frustrating, especially when you’re in the middle of a critical data processing task. In this blog post, we’ll explore the causes of this error and provide solutions to help you get back on track.

Understanding the Error

Before we dive into the solutions, let’s understand what this error means. PySpark is a Python library for Apache Spark, a powerful open-source data processing engine. PySpark communicates with the Spark Java Virtual Machine (JVM) using Py4J, a bridge between Python and Java.

The error “Java gateway process exited before sending its port number” typically occurs when PySpark fails to establish a connection with the JVM. This could be due to various reasons such as incorrect Java installation, incompatible Java version, or issues with environment variables.

Common Causes and Solutions

1. Incorrect Java Installation

The first thing to check is whether Java is correctly installed on your system. PySpark requires Java to run, so any issues with your Java installation can cause this error.

⚠ This code is experimental content and was generated by AI. Please refer to this code as experimental only since we cannot currently guarantee its validity

If Java is correctly installed, you should see the version information. If not, you’ll need to install Java.

2. Incompatible Java Version

PySpark requires Java 8 or 11. If you’re using a different version, you might encounter this error. You can check your Java version using the command above. If you’re using an incompatible version, you’ll need to install the correct version.

3. Environment Variables

If Java is correctly installed and the version is compatible, the next thing to check is your environment variables. PySpark needs to know where Java is installed to communicate with the JVM. This is specified using the JAVA_HOME environment variable.

⚠ This code is experimental content and was generated by AI. Please refer to this code as experimental only since we cannot currently guarantee its validity

If JAVA_HOME is not set or points to an incorrect location, you’ll need to set it to the correct path.

⚠ This code is experimental content and was generated by AI. Please refer to this code as experimental only since we cannot currently guarantee its validity

export JAVA_HOME=/path/to/java

4. PySpark and Py4J Version Compatibility

In some cases, the error might be due to incompatible versions of PySpark and Py4J. Make sure you’re using compatible versions of these libraries. You can check the versions using the following Python commands:

⚠ This code is experimental content and was generated by AI. Please refer to this code as experimental only since we cannot currently guarantee its validity

import pyspark
import py4j
print(pyspark.__version__)
print(py4j.__version__)

If the versions are incompatible, you’ll need to install compatible versions.

Conclusion

The “Java gateway process exited before sending its port number” error in PySpark can be frustrating, but it’s usually due to a few common issues. By checking your Java installation, Java version, environment variables, and library versions, you can usually resolve this error quickly.

Remember, PySpark is a powerful tool for data processing, and understanding how to troubleshoot common errors is an essential skill for any data scientist. Happy data processing!


Keywords: PySpark, Java, Py4J, data processing, data scientist, error troubleshooting, Java gateway process exited before sending its port number, Apache Spark, JVM, Python, environment variables, Java installation, Java version, PySpark version, Py4J version.

Meta Description: A guide for data scientists to troubleshoot the “Java gateway process exited before sending its port number” error in PySpark. Covers common causes and solutions, including Java installation, Java version, environment variables, and library versions.


About Saturn Cloud

Saturn Cloud is your all-in-one solution for data science & ML development, deployment, and data pipelines in the cloud. Spin up a notebook with 4TB of RAM, add a GPU, connect to a distributed cluster of workers, and more. Join today and get 150 hours of free compute per month.

Apache Spark has become a popular framework for processing large-scale data and performing distributed computing tasks. With its powerful processing capabilities, PySpark, the Python API for Apache Spark, has gained significant traction among data engineers and data scientists.

However, like any software, PySpark is not immune to errors and issues that can hinder its smooth execution. One such error that users may encounter is the dreaded «RuntimeError: Java gateway process exited before sending its port number.»

Image description

In this article, we will explore the causes of this error and provide a comprehensive guide to troubleshoot and resolve it. We will delve into the inner workings of PySpark, understand the role of the Java gateway process, and discuss various factors that could contribute to this error. By following the troubleshooting steps and best practices outlined here, you’ll be equipped to overcome this obstacle and ensure the successful execution of your PySpark applications.

Understanding «RuntimeError: Java gateway process exited before sending its port number»

It is essential to grasp the fundamental components of PySpark to comprehend the «RuntimeError: Java gateway process exited before sending its port number» error. PySpark relies on a Java gateway process to establish communication between Python and the Spark cluster. This gateway process acts as a bridge, enabling the Python code to interact with the Java-based Spark runtime environment.

The error occurs when the Java gateway process unexpectedly terminates before it can provide the assigned port number to Python. As a result, the communication channel between Python and the Spark cluster is disrupted, leading to the runtime error.

There can be several underlying causes for this error. It could be due to misconfigurations in the Spark environment, problems with the Java installation, network or firewall issues impeding communication, insufficient system resources, or compatibility conflicts between PySpark, Java, and Spark versions. Identifying the specific cause is crucial to finding an appropriate solution.

Troubleshooting Steps for «RuntimeError: Java gateway process exited before sending its port number»

Resolving the «RuntimeError: Java gateway process exited before sending its port number» error requires a systematic approach to diagnose and address the root cause. Here are the essential troubleshooting steps to follow:

Verify Spark configuration settings

Check the Spark master URL, Spark home directory, and Java version compatibility. Ensure that these settings are correctly configured in your environment. Adjust them if necessary based on your specific Spark setup.

To verify Spark configuration settings, you need to check the configuration files and ensure that the values are correctly set according to your requirements. Here’s a step-by-step guide on how to verify Spark configuration settings:

  1. Locate the Spark Configuration Directory:
  2. The Spark configuration files are typically located in the conf directory within your Spark installation.
  3. Common locations include $SPARK_HOME/conf or /etc/spark/conf.

  4. Identify the Configuration Files:

  5. The two main configuration files are spark-defaults.conf and spark-env.sh.

  6. spark-defaults.conf contains key-value pairs for Spark properties.

  7. spark-env.sh allows you to set environment variables for Spark.

  8. Open spark-defaults.conf:

  9. Use a text editor to open spark-defaults.conf located in the Spark configuration directory.

  10. Review the key-value pairs to verify if they match your desired configuration.

  11. Common properties include Spark master URL, executor memory, driver memory, and executor cores.

  12. Modify spark-defaults.conf if Needed:

  13. If any properties need to be modified, make the necessary changes in the file.

  14. Ensure that the format is key=value, with each property on a new line.

  15. Open spark-env.sh:

  16. Use a text editor to open spark-env.sh located in the Spark configuration directory.

  17. Review the environment variables defined in the file.

  18. Verify Environment Variables:

  19. Check if any environment variables are set and confirm their values.

  20. Common environment variables include SPARK_HOME, JAVA_HOME, and HADOOP_CONF_DIR.

  21. Modify spark-env.sh if Needed:

  22. If any environment variables need to be modified or added, make the necessary changes in the file.

  23. Ensure that the format is export VARIABLE_NAME=value, with each variable on a new line.

  24. Save and Close the Configuration Files:

  25. After making any modifications, save the changes and close the configuration files.

  26. Restart Spark:

  27. If Spark is already running, you may need to restart it for the new configuration settings to take effect.

  28. Restart the Spark cluster or Spark services, depending on your setup.

  29. Verify the Configuration:

  30. Run your PySpark application or execute the spark-submit command with your application.

  31. Monitor the application logs or output to ensure that the desired configuration settings are applied.

Validate Java installation

Confirm that Java is properly installed on your system and that the Java executable is included in the system’s PATH environment variable. Reinstall Java if needed, ensuring that the installation is complete and error-free.

To validate the Java installation on your system, you can follow these steps:

  1. Check Java Version:
  2. Open a command prompt or terminal window.
  3. Type the following command and press Enter:
java -version

Enter fullscreen mode

Exit fullscreen mode

  • The command will display the installed Java version information, including the version number and additional details.
  1. Verify Java Installation Path:
  2. Locate the Java installation directory on your system.
  3. The default installation path on Windows is typically «C:\Program Files\Java» or «C:\Program Files (x86)\Java».
  4. On Linux or macOS, it is usually located in «/usr/lib/jvm» or «/Library/Java/JavaVirtualMachines».

  5. Ensure JAVA_HOME Environment Variable is Set:

  6. Check if the JAVA_HOME environment variable is set on your system.

  7. Open a command prompt or terminal window.

  8. Type the following command and press Enter:

On Windows:

echo %JAVA_HOME%

Enter fullscreen mode

Exit fullscreen mode

On Linux or macOS:

echo $JAVA_HOME

Enter fullscreen mode

Exit fullscreen mode

If the variable is set, it should display the path to the Java installation directory.

  1. Test Java Compiler (javac):
  2. Open a command prompt or terminal window.
  3. Type the following command and press Enter:
javac -version

Enter fullscreen mode

Exit fullscreen mode

  • This command checks the availability of the Java compiler (javac) and displays its version information.
  1. Run a Java Program:
  2. Create a simple Java program (e.g., a Hello World program) using a text editor.
  3. Save the program with a .java extension (e.g., MyProgram.java).
  4. Open a command prompt or terminal window.
  5. Navigate to the directory where you saved the Java program.
  6. Compile the program by running the following command:
javac MyProgram.java

Enter fullscreen mode

Exit fullscreen mode

  • If the program compiles without any errors, it indicates that Java is installed and functioning correctly.
  • Run the compiled program by executing the following command:
java MyProgram

Enter fullscreen mode

Exit fullscreen mode

  • If the program runs and displays the expected output, it confirms that Java is installed and running properly.

By following these steps, you can validate the Java installation on your system. Verifying the Java installation ensures that the necessary Java runtime environment is available for running Java-based applications, including PySpark, which relies on Java.

Check firewall and network settings

Review your firewall settings to ensure that they are not blocking the communication between your Python code and the Spark cluster. Additionally, investigate any network connectivity issues that might impede the Java gateway process. Adjust firewall rules and network settings accordingly.

To check firewall and network settings, follow these steps:

  1. Firewall Configuration:
  2. Identify the firewall software or service running on your system. This can be the built-in firewall on your operating system or a third-party firewall.
  3. Open the firewall configuration interface.
  4. Review the rules and settings related to network traffic and application access.

  5. Allow Spark Ports:

  6. Check if the firewall is blocking the ports used by Spark for communication. By default, Spark uses port 7077 for the Spark master and a range of dynamic ports for worker nodes.

  7. Add firewall rules to allow incoming and outgoing connections on these ports.

  8. If you are using a specific Spark configuration with custom ports, ensure that the firewall rules are adjusted accordingly.

  9. Network Configuration:

  10. Ensure that your network configuration allows communication between the Spark driver (where your PySpark code runs) and the Spark cluster.

  11. If you are running Spark in a distributed environment, such as on multiple machines or in a cloud setup, make sure that network connectivity is established between these nodes.

  12. Check the network settings, such as IP addresses, subnets, and DNS configurations, to ensure proper connectivity.

  13. Ping Test:

  14. Use the ping command to test network connectivity between different machines or nodes.

  15. Open a command prompt or terminal window on one machine and run the following command:

ping <IP address or hostname>

Enter fullscreen mode

Exit fullscreen mode

  • Replace with the IP address or hostname of the machine or node you want to test connectivity with.
  • If the ping is successful and you receive responses, it indicates that the network connection is established.
  1. Network Security Groups (for Cloud Environments):
  2. If you are running Spark in a cloud environment, such as AWS or Azure, check the network security groups or firewall rules specific to that cloud provider.
  3. Review the inbound and outbound rules to ensure that the necessary ports for Spark communication are allowed.

  4. Proxy Settings:

  5. If you are working behind a proxy server, ensure that the proxy settings are configured correctly in your system or application.

  6. Check the proxy configurations in your browser settings, system network settings, or application-specific settings.

By reviewing and adjusting the firewall and network settings as necessary, you can ensure that Spark communication is not blocked and that the necessary network connectivity is established. These steps help prevent any potential issues that might hinder the communication between the Spark driver and the Spark cluster, allowing your PySpark applications to run smoothly.

Address resource limitations

If you are running Spark on a resource-limited environment, such as a machine with limited memory, it could lead to the Java gateway process termination. Allocate more memory to the Spark configuration or reduce the workload to alleviate resource constraints.

To determine if you have resource limitations that could impact your PySpark application’s performance or result in errors like the «RuntimeError: Java gateway process exited before sending its port number,» you can assess the following resources:

  1. Memory (RAM):
  2. Check the available memory on your system where PySpark is running.
  3. On Windows, you can open the Task Manager and navigate to the Performance tab to view memory usage.
  4. On Linux or macOS, you can use the free -h command in the terminal to check available memory.
  5. If the available memory is consistently low or near its limit, it indicates a potential memory limitation.

  6. CPU (Processor):

  7. Evaluate the CPU utilization during the execution of your PySpark application.

  8. In Windows, you can use the Task Manager’s Performance tab to monitor CPU usage.

  9. On Linux or macOS, you can utilize tools like top or htop in the terminal to observe CPU utilization.

  10. If the CPU usage is consistently high or reaches 100% during execution, it suggests a possible CPU limitation.

  11. Disk Space:

  12. Assess the available disk space on the drive where Spark and PySpark application data are stored.

  13. Check the drive’s properties or use the df -h command on Linux or macOS to view disk space.

  14. Ensure that you have enough free space to accommodate the data processed by your PySpark application.

  15. Network Bandwidth:

  16. Evaluate the network bandwidth available for data transfer between your PySpark application and any external data sources or clusters.

  17. If you’re working with large datasets or transferring data over a network, limited bandwidth could impact performance.

  18. Cluster or Environment Limitations:

  19. If you are working with a distributed Spark cluster or cloud-based environment, there may be limitations imposed by the cluster configuration or your chosen service plan.

  20. Review the documentation or consult your system administrator or cloud service provider to understand any limitations or quotas.

If you observe resource limitations in any of these areas, such as low memory, high CPU usage, insufficient disk space, or limited network bandwidth, it is likely that these limitations could affect your PySpark application’s performance or cause errors. In such cases, you may need to adjust your Spark configuration, optimize your code, allocate more resources, or consider scaling up your environment to overcome these limitations and ensure smooth execution of your PySpark applications.

Verify compatibility

Ensure that PySpark, Java, and Spark versions are compatible with each other. Incompatible versions can result in unexpected errors, including the «Java gateway process exited» error. Consult the documentation and release notes of each component to verify their compatibility and consider updating or downgrading versions if necessary.

Additional Troubleshooting Techniques

If the above steps do not resolve the issue, here are some additional troubleshooting techniques to consider:

  1. Review error logs and stack traces: Examine the error logs and stack traces to obtain more specific information about the error. This can help identify any specific libraries, dependencies, or code snippets that might be causing the problem.

  2. Use logging and debugging tools: Employ logging and debugging tools to gain insights into the execution flow and pinpoint the exact location or conditions that trigger the error. This can aid in isolating the root cause and narrowing down the scope of investigation.

  3. Seek help from forums and communities: Reach out to relevant forums, communities, or support channels dedicated to PySpark, Java, or Spark. Share your error details, configurations, and any relevant code snippets to seek assistance from experts who have encountered similar issues.

  4. Consider reinstalling or upgrading: If all else fails, consider reinstalling or upgrading PySpark, Java, or Spark components. This step should be taken with caution, ensuring that the necessary backups and compatibility checks are performed to avoid any potential data loss or compatibility conflicts.

Best Practices and Recommendations

To prevent and address the «RuntimeError: Java gateway process exited before sending its port number» error effectively, here are some best practices and recommendations:

  1. Maintain up-to-date software versions: Regularly update PySpark, Java, and Spark to their latest stable versions. This helps incorporate bug fixes, performance improvements, and compatibility enhancements that can reduce the likelihood of encountering such errors.

  2. Follow proper installation and configuration procedures: Adhere to the official installation and configuration guidelines provided by PySpark, Java, and Spark documentation. This ensures that the setup is accurate, reducing the possibility of misconfigurations or missing dependencies.

  3. Monitor system resources: Keep a close eye on system resources such as memory, CPU utilization, and disk space. Monitoring and allocating sufficient resources to the Spark environment can prevent issues related to resource limitations.

  4. Establish a robust testing environment: Set up a dedicated testing environment where you can perform thorough testing of your PySpark applications. This helps identify and address errors early in the development process, reducing the impact on production systems.

  5. Stay updated with documentation and community resources: Stay informed about the latest updates, troubleshooting techniques, and solutions shared through official documentation, community forums, and online resources. Active participation and engagement with the community can provide valuable insights and guidance when encountering issues.

Learning Python with a Python online compiler

Learning a new programming language might be intimidating if you’re just starting out. Lightly IDE, however, makes learning Python simple and convenient for everybody. Lightly IDE was made so that even complete novices may get started writing code.

Image description

Lightly IDE’s intuitive design is one of its many strong points. If you’ve never written any code before, don’t worry; the interface is straightforward. You may quickly get started with Python programming with our Python online compiler with only a few clicks.

The best part of Lightly IDE is that it is cloud-based, so your code and projects are always accessible from any device with an internet connection. You can keep studying and coding regardless of where you are at any given moment.

Lightly IDE is a great place to start if you’re interested in learning Python. Learn and collaborate with other learners and developers on your projects and receive comments on your code now.

Read more: Solving PySpark RuntimeError: Java gateway process exited

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and
privacy statement. We’ll occasionally send you account related emails.

Already on GitHub?
Sign in
to your account

Closed

leafjungle opened this issue

Mar 23, 2017

· 29 comments

Comments

@leafjungle

import pyspark —> works fine.
sc = pyspark.SparkContext() —> Error, info: «java gateway process exited before sending the driver its port number»

«»»
the python context
image

«»»

After googling, I set the environment:
export PYSPARK_SUBMIT_ARGS=»—master local[2] pyspark-shell»
or even:
sc = pyspark.SparkContext(«local»)

but the problem remains.

@leafjungle

After a lot of Googling, finally I found the solution:
JAVA_HOME is not set !!

ryanzh, thsol, filipyoo, Beomi, asmith26, hyu-aa, jgwerner, p234a137, qacollective, dongdyang, and 9 more reacted with thumbs up emoji

@VeLKerr

As for me, setting JAVA_HOME didn’t help.
5

@vanessaescalante

Same for me

~/spark-2.1.1-bin-hadoop2.7/python/pyspark/java_gateway.py in launch_gateway(conf)
93 callback_socket.close()
94 if gateway_port is None:
—> 95 raise Exception(«Java gateway process exited before sending the driver its port number»)
96
97 # In Windows, ensure the Java child processes do not linger after Python has exited.

Exception: Java gateway process exited before sending the driver its port number

@sinramyeon

Same error happens. delete PYSPARK_SUBMIT_ARGS dosen’t get me through this problem. also I set my JAVA_HOME and SPARK_HOME.

@ghost

shihs, zechengz, maximillianus, AliAlabdlmohsen, jthalliens, and shenchaojerry reacted with thumbs up emoji
f-z, ozlerhakan, ryangrush, zechengz, vsartor, and jthalliens reacted with hooray emoji

@SujanMukherjee

I figured out the problem in Windows system. The installation directory for Java must not have blanks in the path such as in «C:\Program Files». I re-installed Java in «C\Java». I set JAVA_HOME to C:\Java and the problem went away.

@hykavitha

setting JAVA_HOME dint help
os.environ[‘JAVA_HOME’] = ‘ /Library/Java/JavaVirtualMachines/jdk1.8.0_131.jdk/Contents/Home’
also I set by exporting path
export JAVA_HOME=/Library/Java/JavaVirtualMachines/jdk1.8.0_131.jdk/Contents/Home
—-> 4 sc = SparkContext(appName=»PythonSparkStreamingKafka_RM_01″)
Exception: Java gateway process exited before sending the driver its port number
error is
/Library/Java/JavaVirtualMachines/jdk1.8.0_131.jdk/Contents/Home/bin/java: No such file or directory

but actually when I run
$ /Library/Java/JavaVirtualMachines/jdk1.8.0_131.jdk/Contents/Home/bin/java
I get proper java option
$ /Library/Java/JavaVirtualMachines/jdk1.8.0_131.jdk/Contents/Home/bin/java
Usage: java [-options] class [args…]
(to execute a class)
or java [-options] -jar jarfile [args…]
(to execute a jar file)
where options include:

@rajesh-srivastava

I got this error after upgrading to JDK 10. Changing JAVA_HOME to point to JDK 8 solved the issue. Spark version — 2.3.1

@danielemarmiroli

@gulshan-gaurav

I tried all the above options. nothing helped.
OS: Mac OS
spark:2.3.1
java version 1.8.0_181

@hykavitha how did you fix the issue?

@hykavitha

@gulshan-gaurav

I tried setting JAVA_HOME but it did not solve the issue.
Finally I had to do a clean Install of everything, now its working fine.
I am still clueless as to what exactly was the issue.

@hykavitha

@gulshan-gaurav : did you source your bash_profile?
sometimes restarting the mac also resolves issues related to this.

@ecampana

I did not have to unset my PYSPARK_SUBMIT_ARGS shell variable. Setting my JAVA_HOME shell variable did resolve the issue for me though. Strange, everything seemed to be working the previous day but then today the problem appeared. Running my jupyter notebooks from a server at work. I used the following shell command to find path needed for JAVA_HOME.

@ylashin

On Windows, I had the problem due to having JRE not JDK. Once I removed JRE and insalled JDK in C:\java\jdk1.8.0_201 just in case spaces in program files make things crash, I was able to run pyspark in Jupyter notebooks. JDK installation includes both JDK and JRE but JAVA_HOME should point to JDK folder, in my case it was C:\java\jdk1.8.0_201

@shihs

I use Mac OS. I fixed the problem!

I have jdk-11.jdk in /Library/Java/JavaVirtualMachines, by @rajesh-srivastava said, JDK8 worked fine. So I downloaded JDK8 (I followed the link).
Which is:

brew tap caskroom/versions
brew cask install java8

After this, as @leafjungle said, I added

export JAVA_HOME="$(/usr/libexec/java_home -v 1.8)"

to ~/.bash_profile file.

It works now!
Hope this help :)

@aashana94

@shihs
How did you add to ~/.bash_profile?

@ecampana

@shihs they explicitly added the export JAVA_HOME line above to their ~/.bash_profile text file.

@shihs

@aashana94
find the file .bash_profile in ~/ .
It’s a hidden file, use «Shift + Command + . » the hidden files will show.

@shihs

@ecampana
For me, It didn’t have, I added it manually.

@shihs

you can use echo $JAVA_PATH in terminal to check if the path is added or not

@maximillianus

following @leafjungle’s advice, setting JAVA_HOME worked for me.

I’m on Mac with a brew installed OpenJDK setup,

export JAVA_HOME="$(/usr/libexec/java_home -v 1.8)"

Credit => https://stackoverflow.com/a/6588410/665578

I just want to add that I set JAVA_HOME=/usr/bin/java and it doesn’t work. Setting JAVA_HOME to this actually works. Thanks!

I did not setup anything else including SPARK_HOME or PYSPARK_SUBMIT_ARGS.

My setup:

- macOS Sierra 10.12
- apache-spark 2.4.3 (installed through homebrew)
- python3
- java8 installed through homebrew

@guido611

I was running in the same error. The spaces in the JAVA_HOME and the SPARK_HOME broke my neck.
Following the advice on this page, I have solved it.

Just replace Program Files with Progra~1 in the environment variables. If JDK is installed under \Program Files (x86), then replace the Progra~1 part by Progra~2 instead.

@Mona-Arami

After spending hours and hours trying many different solutions, I can confirm that Java 13 SDK causes this error. On Mac, please navigate to /Library/Java/JavaVirtualMachines then run this command to uninstall Java JDK 13 completely:

sudo rm -rf jdk-13.jdk/

After that, please download JDK 8 then the problem will be solved.follow this link.
https://www.cs.dartmouth.edu/~scot/cs10/mac_install/mac_install.html

@burgerbaba

Step by step installation for windows:

  1. Download Java jdk and install.
  2. Copy the folder folder path where your Java is installed.
  3. In your python environment, (Spyder in my case) add this (and replace the copied Java folder path within the quotations in the first line only)
os.environ["JAVA_HOME"] = "C:/Program Files/Java/jdk1.8.0_251"
os.environ["PATH"] = os.environ["JAVA_HOME"] + "/bin:" + os.environ["PATH"]
  1. Then you should be able to run spark = sparknlp.start()

Hope this helps.

@rishi-wqd190004

On fedora33 i faced the same issue when i did a normal update. Hence the java folder name got changed, so added the same folder name (presently located in /usr/lib/jvm/java_folder_name) in the .bashrc file and it resulted in everything working fine.
Hope this helps.

@digital-spearman

I’m facing similar error message, I’m using Jupyter notebook to learn pyspark in a windows machine.
Glad if i can get some pointers to resolve the issue. TIA

@noncreature0714

(I’m on macOS.) Even though my JAVA_HOME was set and work for most things, I still had this issue.

The fix was to set it in my .zshrc (or wherever it’s set) with

export JAVA_HOME=$(/usr/libexec/java_home)

and not simply a raw path.

@hosein97

I had the same error. However, Pyspark shell was running with no problem but, switching on jupyter notebook was giving the error. I found that the python version of my notebook(3.7) was different from my local one (3.8). I fixed this and the error was gone.

  • Java for windows 10 x64 скачать
  • Java 1603 ошибка windows 10
  • Ivms 4500 скачать для windows 10 на русском официальный сайт
  • Jarvis для windows 10 с голосом скачать
  • Java for windows 10 64 bit скачать