-
Главная
-
Инструкции
-
Python
-
Как создать виртуальное окружение в Python: инструкция
В статье вы узнаете, как создать виртуальную среду Python. Это может понадобиться Python-разработчикам для того, чтобы избежать проблем с библиотеками разных версий.
- Простой пример: у вас есть два приложения, которые подключаются к одной и той же библиотеке. Вот только каждому приложению нужны разные ее версии.
- Еще пример: вы хотите обеспечить работу приложения независимо от обновлений библиотек, которые устанавливаются в глобальном хранилище Python.
- И третий пример: у вас нет доступа к этому хранилищу.
Выход во всех трех случаях — создать venv
Python. Название модуля venv
— это сокращение от Virtual Environment, то есть виртуальная среда. Venv представляет собой отличный инструмент для изоляции проектов, своеобразную песочницу. В ней мы можем запускать приложение со своими зависимостями, чтобы не мешать другим приложениям, которые используют то же ПО, но иных версий. В результате каждое приложение будет запускаться в собственной виртуальной среде, изолированно от остальных, что повысит стабильность работы всех приложений.
Приятная новость: отдельно устанавливать venv
на Windows нам не потребуется, пакет является частью стандартной библиотеки Python 3 и поставляется вместе с интерпретатором.
Что касается Linux, то здесь venv
далеко не всегда входит в пакет операционной системы, поэтому может потребоваться его установить. На Ubuntu/Debian это делается следующей командой:
sudo apt install -y python3-venv
Некоторые пакеты Python требуют сборки из исходных кодов, поэтому также может потребоваться установка следующих пакетов:
sudo apt install -y build-essential libssl-dev libffi-dev python3-dev
Теперь рассмотрим, как создать виртуальное окружение Python 3 в Windows и Linux с помощью venv
.
Шаг 1. Запускаем venv
Сначала идет общая команда для всех ОС:
python -m venv venv
Разберем ее чуть подробнее. Здесь -m
выступает в качестве инструкции для запуска модуля venv
. А вторая запись venv
указывает на каталог venv/lib/python3.8/site-packages/
(номер версии 3.8 добавлен просто для примера, она может быть и другой), в котором Python будет хранить все библиотеки и другие компоненты, необходимые для изолированной работы приложений.
Шаг 2. Активируем виртуальную среду
Активация виртуального окружения выполняется по-разному для Windows и Linux. В ОС от Microsoft понадобится запустить этот скрипт:
venv\Scripts\activate.bat
А в Linux (и также в MacOS) нужно ввести вот такую инструкцию:
source venv/bin/activate
Если всё сделано правильно, будет выведена следующая запись:
(venv) root@purplegate:/var/test#
Теперь можно приступать к работе над проектом в изолированном окружении.
Другие инструменты
Конечно, venv
является самым современным инструментом для создания виртуальной среды. Но он появился только в Python 3. А что делать тем, кто по каким-то причинам работает с более старыми версиями языка? Ответ: пробовать иные инструменты, которые имеют и ряд других полезных функций, иначе бы мы о них даже не упоминали. Кратко опишем эти решения, а затем рассмотрим подробнее наиболее популярное.
virtualenv
. Простой и понятный инструмент, который пригодится при развертывании многих приложений. Поэтому он будет полезен для освоения, и ниже мы представим инструкцию по работе с ним.pyenv
. Позволяет изолировать версии «Питона». Полезен, если по какой-то причине вам требуется запускать разные версии Python — например, для тестирования программы.virtualenvwrapper
. Обертка дляvirtualenv
, которая используется для хранения виртуальных сред и различных операций с ними (создание, копирование, удаление).Virtualenvwrapper
хорош тем, что с его помощью можно легко переключаться между средами и использовать различные плагины для расширения функций.
Создание виртуального окружения при помощи virtualenv
Рассмотрим этот процесс на примере ОС Linux. Впрочем, запуск virtualenv
в Windows выполняется почти так же, разница будет лишь в путях, которые здесь будут иными, и скриптах. И это мы будем оговаривать отдельно.
Шаг 1. Устанавливаем virtualenv
Можно скачать исходники приложения и поставить его вручную, но удобнее всего сделать это с помощью менеджера pip
. В этом случае всё, что вам понадобится, это ввести в консоли следующую инструкцию:
pip install virtualenv
Шаг 2. Создаем виртуальную среду
Этот шаг делается тоже при помощи всего одной небольшой инструкции:
virtualenv myenv
Эта простая команда создаст новый каталог в текущем. Разумеется, вместо myenv
вы можете ввести любое другое имя для своего окружения. Теперь разберем структуру созданной директории:
- в
/myenv/bin
будут размещены скрипты для работы с окружением, копия интерпретатора нужной версии, а также собственноpip
и ряд приложений для пакетной обработки. Если вы работаете в Windows, то эта папка будет иметь другой адрес:/myenv/Scripts
. - директории
/
myenv/lib
, а также/myenv/include
предназначены для хранения основных библиотек окружения. А все новые файлы будут загружаться в/myenv/lib/pythonX.X/site-packages/
, где вместо X.X будет указана ваша версия «Питона».
Шаг 3. Активируем виртуальную среду
В Linux и Windows это делается немного по-разному. Для Linux инструкция такая (будем использовать всё тот же пример с именем myenv
, которое вы замените на нужное вам):
source myenv/bin/activate
А вот так это будет выглядеть в Windows:
myenv\Scripts\activate.bat
При корректной активации вы увидите имя вашего виртуального окружения в нижней строке (выделили красным):
Если теперь создать виртуальную среду с ключом --
system-site-packages
, то вы получите доступ к общему хранилищу в рамках своей среды. Делается это так:
virtualenv --system-site-packages myenv
Обратите внимание, что путь к хранилищу в Linux и в Windows тоже будет разным: соответственно, для Линукса это будет /usr/lib/python3.8/site-packages
, а для Виндовc — \Python38\Lib\site-packages
. Цифры версии, опять же, для примера, у вас она может быть другой.
Шаг 4. Выходим из виртуальной среды
После завершения работы с программой из нее нужно корректно выйти. В Linux это делается командой deactivate
, а в Windows с помощью «батника», пакетного файла deactivate.bat
.
Что нового?
Помимо уже рассмотренного модуля venv
и virtualenv
, существуют и более современные инструменты, обеспечивающие более гибкое управление проектами на Python, в том числе и в виртуальном окружении:
- Poetry. Это менеджер, позволяющий управлять зависимостями приложения в виртуальной среде. Также он облегчает тесты и развертывание приложений, автоматизируя многие вещи.
- Pipenv. И еще один менеджер, который уже содержит в себе
pip
иvirtualenv
, а также ряд других полезных инструментов. Этот менеджер создан для облегчения управления окружениями и пакетами, ведь многие разработчики на определенной стадии развития проекта сталкиваются с проблемами из-за контроля версий.
По большому счету, каждый из этих менеджеров заслуживает отдельного разговора, но их возможности выходят далеко за рамки нашей статьи. Поэтому расскажем самое главное об этих продуктах.
Главное о Poetry
Poetry способен взять на себя всю работу с библиотеками в рамках виртуальной среды, в том числе устанавливать, обновлять и публиковать их. Например, возможностей pip
для этого уже не хватит. Кроме того, создание и упаковка приложения здесь реализована при помощи всего одной команды (замените myproject
на собственное название):
poetry new myproject
А, например, инструкция poetry init
позволит выполнить инициализацию проекта в уже созданной директории. Вводится эта инструкция из той же директории.
Также Poetry умеет выполнять публикацию проектов в частных репозиториях, отслеживать зависимости, а еще контролировать их версии. Наконец, он облегчает работу на собственных виртуальных серверах, обеспечивая надежную изоляцию ваших проектов. Найти этот замечательный инструмент можно здесь.
Главное о Pipenv
Если в двух словах, то Pipenv можно охарактеризовать, как pip
+ virtualenv
, но с продвинутыми возможностями. И на самом деле возможности этого менеджера гораздо шире. Так, он избавляет от необходимости пользоваться не слишком удобным файлом зависимостей requirements.txt
.
Вместо этого в Pipenv есть два других файла, один из которых, Pipfile.lock
, позволяет связывать версии библиотек, что хорошо для безопасности разрабатываемых приложений. Ну, а собственно Pipfile
является продвинутой заменой устаревшему файлу требований. А дело в том, что Pipfile
, в отличие от requirements.txt
, обновляется автоматически с изменением версий продукта, что здорово выручает при работе в команде, избавляя разработчиков от ошибок зависимостей. Pipenv можно найти здесь.
Что ж, теперь вы вооружены полным набором инструментов, и обилие зависимостей с разными версиями больше не должно вас пугать.
Виртуальные среды (окружения) используются в Python 3 контроля версионности пакетов. Кроме контроля версий среды используют для использования разных интерпретаторов. Самих пакетов, которые создают виртуальные окружения много. В этой статье речь пойдет про venv, virtualenv и virtualenvwrapper.
Для чего нужно виртуальные среды?
При создании скрипта или программы вы часто используете сторонние модули (пакеты). Если в последующем потребуется перенос программы на другой компьютер, то вы можете столкнуться с двумя проблемами:
- Нужные пакеты отсутствуют на новом компьютере и придется проверять каждый файл программы для их поиска. Либо получить список установленных пакетов через «pip list» на старом компьютере, который выведет множество лишних модулей.
- Даже если количество пакетов или файлов программ маленькое, или вы его создали отдельно, то вы все равно можете столкнуться с проблемами в версиях. Пакеты могли быть обновлены, а методы и классы изменены.
Использование виртуальных сред избавляет вас от этих проблем. В таком виртуальной среде находится свой интерпретатор, свой pip и все пакеты относятся только к нему. Так же, весь проект, можно перенести как папку на другой компьютер без ошибок.
Кроме этого вы можете запускать разные версии Python в разных виртуальных средах, что сильно упрощает работу.
Установка и создания окружения с virtualenv
Самый популярный пакет, который используется для создания виртуальных сред в Python, это virtualenv. Для его установки на Windows выполните:
pip install virtualenv
Для установки на Linux системах, для Python 3, понадобится выполнить такую команду:
sudo pip3 install virtualenv
Если вы не будете использовать sudo, то в зависимости от версии ОС у вас появятся разные ошибки. В CentOS установка не выполнится вовсе, а в Ubuntu не будет добавлен путь в переменную окружения:
- PermissionError: [Errno 13] Permission denied: ‘/usr/local/lib/python3.6’
- Command ‘virtualenv’ not found, but can be installed with: sudo apt install virtualenv
Далее, вне зависимости от того используете ли вы Linux или Windows, вы можете выполнить команду получения справки:
virtualenv --help
Я использую Python 3.6, и так я создам окружение в папке projectname/venv:
virtualenv -p python3.6 project/venv
Способ выше устанавливает окружение относительно текущего пути. Если нужно установить на другом диске или каталоге, то можно использовать абсолютный путь. Так же не обязательно указывать параметр «-p» если вы используете одну версию Python. Вариант как это может быть сделано на Windows:
virtualenv D:\project\venv
Само расположение виртуального окружения рекомендуется создавать в одной папке вместе разрабатываемым приложением. Такую структуру будет легче сопровождать. Я обычно придерживаюсь такой структуры:
-projectname # Каталог проекта
--venv # Окружение
--app # Каталог с приложением
Активация и выход из окружения
Для того что бы виртуальное окружения начало работать его нужно активировать. В разных ОС это делается по-разному.
В случаях с Linux указываем полный путь до venv/bin/activate:
source project/venv/bin/activate
Для активации в Windows, в папке venv\Scripts есть несколько файлов:
- activate.ps1 — для активации через Powershell;
- activate.bat — для активации через CMD.
Для активации просто укажите полный путь до файла. Например:
D:\projectname\venv\Scripts\activate.ps1
О том что вы находитесь в виртуальном окружении свидетельствуют следующие надписи:
Вы так же можете сравнить количество установленных пакетов внутри виртуального окружения с тем, что установлено вне:
pip list
Теперь вы можете устанавливать пакеты, которые будут работать только в этой среде.
Для выхода из окружения, за исключением запуска с помощью CMD, используйте команду:
deactivate
Для CMD нужно указать путь до файла «venv\Scripts\deactivate.bat».
Управление средами через virtualenvwrapper
Если вы создаете множество виртуальных сред, например для тестирования в разных версиях Python, вы можете использовать virtualenvwrapper. Этот пакет представляет собой надстройку для virtualenv для более удобной работы и устанавливается отдельно.
Благодаря этому пакету мы сможем запускать ваши окружения так:
workon project_name
# вместо
source project_name/venv/bin/activate
Для Windows нужно установить следующий пакет:
pip install virtualenvwrapper-win
Для Linux нужно так же использовать sudo:
sudo pip3 install virtualenvwrapper
Настройки для Linux
Virtualenvwrapper хранит все окружения в одном месте. Это место определяется через переменную WORKON_HOME в Linux и по умолчанию равно директории ‘/home/пользователь/.virtualenvs’. Если вы хотите изменить это расположение — выполните команду экспорта с нужным путем:
export WORKON_HOME = /var/envs/
# Создание директории
source ~/.bashrc
mkdir -p $WORKON_HOME
Следующая команда добавит скрипты в домашний каталог для удобной работы:
source /usr/local/bin/virtualenvwrapper.sh
# Если путь отличается, то файл virtualenvwrapper.sh можно найти так
which virtualenvwrapper.sh
При выполнении предыдущей команды у меня появилась ошибка:
virtualenvwrapper.sh: There was a problem running the initialization hooks. If Python could not import the module virtualenvwrapper.hook_loader
Она исправилась добавлением переменной в env с путем до нужного интерпретатора:
export VIRTUALENVWRAPPER_PYTHON=/usr/bin/python3
Настройки для Windows
Все виртуальные среды, которые будут созданы, по умолчанию будут располагаться по пути «C:\Users\%USERNAME%\Envs». Если вам нужно изменить расположение, то создайте переменную WORKON_HOME с нужной директорией:
Важный момент, в случае с Windows, команды virtualenvwrapper не будут выполняться Powershell. Команды работают только через CMD.
Основные команды
Далее мы можем использовать следующие команды (основные):
- mkvirtualenv — создание окружения;
- lsvirtualenv — отображение списка окружений;
- rmvirtualenv — удаление;
- workon — переключение между виртуальными средами;
- deactivate — выход из текущего окружения.
Так мы создадим виртуальную среду:
mkvirtualenv project_name
Так выйдем из созданной среды:
deactivate
Активация окружения:
workon django3.0
Если нужно использовать другую версию Python:
mkvirtualenv -p python2.7 project_name/venv
Получение справки:
mkvirtualenv -h
Создание виртуальных сред со встроенным пакетом Python venv
Ранее, до версии Python >= 3.6 базовая установка интерпретатора шла вместе с пакетом pyenv, но на данный момент он считается устаревшим и более не поддерживается. На его смену пришел venv. В некоторых версиях ОС (Ubuntu/Debian) может потребоваться его отдельная установка:
sudo apt install python3-venv
Проверить, то что пакет venv установлен, можно так:
python -m venv
# или
python3 -m venv
Следующая команда создаст виртуальную среду:
python -m venv C:\project_name\project_venv
# или
python3 -m venv /var/project_name/project_venv
Выбранная версия Python и стандартные библиотеки будут скопированы в указанную папку.
Активация окружения выполняется следующим образом:
# CMD
C:\project_name\project_venv\Scripts\activate.bat
# Powershell
C:\project_name\project_venv\Scripts\Activate.ps1
# Bash
project_name/project_venv/bin/activate
Для выхода из окружения:
# CMD
C:\project_name\project_venv\Scripts\deactivate.bat
# Powershell и bash
deactivate
Создание виртуального окружения в Pycharm
В некоторых IDE, например Pycharm, консоль встроенная и по умолчанию у вас будет запускаться интерпретатор выбранный в настройках. В Pycharm вы можете создать или изменить проект привязав его к определенному интерпретатору.
Виртуальную среду можно создать при создании нового проекта. Для этого нужно зайти по следующему пути:
В новом окне выбрать название проекта, место для копирования, интерпретатор и нажать кнопку создания окружения:
Для настройки окружения для старых проектов нужно зайти в настройки:
Во вкладе «Python Interpreter» будет выбор из существующих интерпретаторов (1). Либо можно создать новый (2):
Создание списка установленных пакетов Requirements.txt
Используя виртуальные окружения можно легко создавать файл, в котором будут собраны все названия и версии пакетов для определенного проекта. Этот подход используется для удобства работы, так как одной программой мы сразу установим нужные пакеты.
Так мы получим список пакетов, установленных в виртуальном окружении, в формате читаемом pip:
pip freeze
Следующим способом мы экспортируем этот список в файл Requirements.txt (способ подходит для Bash/CMD/Powershell):
pip freeze > Requirements.txt
На другом компьютере/среде мы можем этот список быстро проверить и установить отсутствующие пакеты следующей командой:
pip install -r Requirements.txt
…
Теги:
#python
#virtualenv
#venv
Время на прочтение
8 мин
Количество просмотров 296K
Язык программирования Python считается достаточно простым. На нем легче и быстрее пишутся программы, по сравнению с компилируемыми языками программирования. Для Python существует множество библиотек, позволяющих решать практически любые задачи. Есть, конечно, и минусы и другие нюансы, но это отдельная тема.
Довольно часто я вижу, как мои знакомые и друзья начинают изучать Python и сталкиваются с проблемой установки и использования сторонних библиотек. Они могут несколько часов потратить на установку библиотеки, и даже, могут не справиться с этим и забить на неё. В то время как, в большинстве случаев, это можно было сделать за несколько минут.
Статья начинается с базовых вещей: с установки Python 3, инструментов разработки Pip и Virtualenv и среды разработки PyCharm в Windows и в Ubuntu. Для многих это не представляет трудностей и возможно, что уже всё установлено.
После чего будет то, ради чего задумывалась статья, я покажу как в PyCharm создавать и использовать виртуальные окружения и устанавливать в них библиотеки с помощью Pip.
Установка Python и Pip
Pip является менеджером пакетов для Python. Именно с помощью него обычно устанавливаются модули/библиотеки для разработки в виде пакетов. В Windows Pip можно установить через стандартный установщик Python. В Ubuntu Pip ставится отдельно.
Установка Python и Pip в Windows
Для windows заходим на официальную страницу загрузки, где затем переходим на страницу загрузки определенной версии Python. У меня используется Python 3.6.8, из-за того, что LLVM 9 требует установленного Python 3.6.
Далее в таблице с файлами выбираем «Windows x86-64 executable installer» для 64-битной системы или «Windows x86 executable installer» для 32-битной. И запускаем скачанный установщик, например, для версии Python 3.8.1 он называется python-3.8.1-amd64.exe
.
Во время установки ставим галочку возле Add Python 3.x to PATH и нажимаем Install Now:
Установка Python и Pip в Ubuntu
В Ubuntu установить Python 3 можно через терминал. Запускаем его и вводим команду установки. Вторая команда выводит версию Python.
sudo apt install python3-minimal
python3 -V
Далее устанавливаем Pip и обновляем его. После обновления необходимо перезапустить текущую сессию (или перезагрузить компьютер), иначе возникнет ошибка во время вызова Pip.
sudo apt install python3-pip
pip3 install --user --upgrade pip
Основные команды Pip
Рассмотрим основные команды при работе с Pip в командой строке Windows и в терминале Ubuntu.
Если виртуальные окружения не используются, то во время установки пакета(ов) полезно использовать дополнительно ключ --user
, устанавливая пакет(ы) локально только для текущего пользователя.
Установка VirtualEnv и VirtualEnvWrapper
VirtualEnv используется для создания виртуальных окружений для Python программ. Это необходимо для избежания конфликтов, позволяя установить одну версию библиотеки для одной программы, и другу для второй. Всё удобство использования VirtualEnv постигается на практике.
Установка VirtualEnv и VirtualEnvWrapper в Windows
В командной строке выполняем команды:
pip install virtualenv
pip install virtualenvwrapper-win
Установка VirtualEnv и VirtualEnvWrapper в Ubuntu
Для Ubuntu команда установки будет следующей:
pip3 install --user virtualenv virtualenvwrapper
После которой в конец ~/.bashrc
добавляем:
export VIRTUALENVWRAPPER_PYTHON=/usr/bin/python3
source ~/.local/bin/virtualenvwrapper.sh
При новом запуске терминала должны будут появиться сообщения, начинающиеся на virtualenvwrapper.user_scripts creating
, что говорит об успешном завершении установки.
Работа с виртуальным окружением VirtualEnv
Рассмотрим основные команды при работе с VirtualEnv в командой строке Windows и в терминале Ubuntu.
Находясь в одном из окружений, можно ставить пакеты через Pip, как обычно и нет необходимости добавлять ключ --user
:
pip3 install markdown
Для Windows можно указать в переменных среды WORKON_HOME
для переопределения пути, где хранятся виртуальные окружения. По умолчанию, используется путь %USERPROFILE%\Envs
.
Установка PyCharm
PyCharm — интегрированная среда разработки для языка программирования Python. Обладает всеми базовыми вещами необходимых для разработки. В нашем случае огромное значение имеет хорошее взаимодействие PyCharm с VirtualEnv и Pip, чем мы и будем пользоваться.
Установка PyCharm в Windows
Скачиваем установщик PyCharm Community для Windows с официального сайта JetBrains. Если умеете проверять контрольные суммы у скаченных файлов, то не забываем это сделать.
В самой установке ничего особенного нету. По сути только нажимаем на кнопки next, и в завершение на кнопку Install. Единственно, можно убрать версию из имени папки установки, т.к. PyCharm постоянно обновляется и указанная версия в будущем станет не правильной.
Установка PyCharm в Ubuntu
Скачиваем установщик PyCharm Community для Linux с официального сайта JetBrains. Очень хорошей практикой является проверка контрольных сумм, так что если умеете, не ленитесь с проверкой.
Распаковываем архив с PyCharm и переименовываем папку с программой в pycharm-community
, убрав версию из названия.
Теперь в директории ~/.local
(Ctrl + H — Показ скрытый файлов), создаем папку opt
, куда и перемещаем pycharm-community
. В результате по пути /.local/opt/pycharm-community
должны размещаться папки bin
, help
и т.д. Таким образом PyCharm будет находится в своём скромном месте и никому не будет мешать.
Далее выполняем команды в терминале:
cd /home/maksim/.local/opt/pycharm-community/bin
sh ./pycharm.sh
Производим установку. И очень важно в конце не забыть создать desktop файл для запуска PyCharm. Для этого в Окне приветствия в нижнем правом углу нажимаем на Configure → Create Desktop Entry.
Установка PyCharm в Ubuntu из snap-пакета
PyCharm теперь можно устанавливать из snap-пакета. Если вы используете Ubuntu 16.04 или более позднюю версию, можете установить PyCharm из командной строки.
sudo snap install pycharm-community --classic
Использование VirtualEnv и Pip в PyCharm
Поддержка Pip и Virtualenv в PyCharm появилась уже довольно давно. Иногда конечно возникают проблемы, но взаимодействие работает в основном стабильно.
Рассмотрим два варианта работы с виртуальными окружениями:
- Создаём проект со своим собственным виртуальным окружением, куда затем будут устанавливаться необходимые библиотеки;
- Предварительно создаём виртуальное окружение, куда установим нужные библиотеки. И затем при создании проекта в PyCharm можно будет его выбирать, т.е. использовать для нескольких проектов.
Первый пример: использование собственного виртуального окружения для проекта
Создадим программу, генерирующую изображение с тремя графиками нормального распределения Гаусса Для этого будут использоваться библиотеки matplotlib и numpy, которые будут установлены в специальное созданное виртуальное окружение для программы.
Запускаем PyCharm и окне приветствия выбираем Create New Project.
В мастере создания проекта, указываем в поле Location путь расположения создаваемого проекта. Имя конечной директории также является именем проекта. В примере директория называется ‘first_program’.
Далее разворачиваем параметры окружения, щелкая по Project Interpreter. И выбираем New environment using Virtualenv. Путь расположения окружения генерируется автоматически. В Windows можно поменять в пути папку venv
на Envs
, чтобы команда workon
находила создаваемые в PyCharm окружения. Ставить дополнительно галочки — нет необходимости. И нажимаем на Create.
Теперь установим библиотеки, которые будем использовать в программе. С помощью главного меню переходим в настройки File → Settings. Где переходим в Project: project_name → Project Interpreter.
Здесь мы видим таблицу со списком установленных пакетов. В начале установлено только два пакета: pip и setuptools.
Справа от таблицы имеется панель управления с четырьмя кнопками:
- Кнопка с плюсом добавляет пакет в окружение;
- Кнопка с минусом удаляет пакет из окружения;
- Кнопка с треугольником обновляет пакет;
- Кнопка с глазом включает отображение ранних релизов для пакетов.
Для добавления (установки) библиотеки в окружение нажимаем на плюс. В поле поиска вводим название библиотеки. В данном примере будем устанавливать matplotlib. Дополнительно, через Specify version можно указать версию устанавливаемого пакета и через Options указать параметры. Сейчас для matplotlib нет необходимости в дополнительных параметрах. Для установки нажимаем Install Package.
После установки закрываем окно добавления пакетов в проект и видим, что в окружение проекта добавился пакет matplotlib с его зависимостями. В том, числе был установлен пакет с библиотекой numpy. Выходим из настроек.
Теперь мы можем создать файл с кодом в проекте, например, first.py. Код программы имеет следующий вид:
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(-5, 5, 100)
def gauss(sigma, mu):
return 1/(sigma * (2*np.pi)**.5) * np.e ** (-(x-mu)**2/(2 * sigma**2))
dpi = 80
fig = plt.figure(dpi=dpi, figsize=(512 / dpi, 384 / dpi))
plt.plot(x, gauss(0.5, 1.0), 'ro-')
plt.plot(x, gauss(1.0, 0.5), 'go-')
plt.plot(x, gauss(1.5, 0.0), 'bo-')
plt.legend(['sigma = 0.5, mu = 1.0',
'sigma = 1.0, mu = 0.5',
'sigma = 1.5, mu = 0.0'], loc='upper left')
fig.savefig('gauss.png')
Для запуска программы, необходимо создать профиль с конфигурацией. Для этого в верхнем правом углу нажимаем на кнопку Add Configuration…. Откроется окно Run/Debug Configurations, где нажимаем на кнопку с плюсом (Add New Configuration) в правом верхнем углу и выбираем Python.
Далее указываем в поле Name имя конфигурации и в поле Script path расположение Python файла с кодом программы. Остальные параметры не трогаем. В завершение нажимаем на Apply, затем на OK.
Теперь можно выполнить программу и в директории с программой появится файл gauss.png
:
Второй пример: использование предварительно созданного виртуального окружения
Данный пример можно использовать во время изучения работы с библиотекой. Например, изучаем PySide2 и нам придется создать множество проектов. Создание для каждого проекта отдельного окружения довольно накладно. Это нужно каждый раз скачивать пакеты, также свободное место на локальных дисках ограничено.
Более практично заранее подготовить окружение с установленными нужными библиотеками. И во время создания проектов использовать это окружение.
В этом примере мы создадим виртуальное окружения PySide2, куда установим данную библиотеку. Затем создадим программу, использующую библиотеку PySide2 из предварительно созданного виртуального окружения. Программа будет показывать метку, отображающую версию установленной библиотеки PySide2.
Начнем с экран приветствия PyCharm. Для этого нужно выйти из текущего проекта. На экране приветствия в нижнем правом углу через Configure → Settings переходим в настройки. Затем переходим в раздел Project Interpreter. В верхнем правом углу есть кнопка с шестерёнкой, нажимаем на неё и выбираем Add…, создавая новое окружение. И указываем расположение для нового окружения. Имя конечной директории будет также именем самого окружения, в данном примере — pyside2
. В Windows можно поменять в пути папку venv
на Envs
, чтобы команда workon
находила создаваемые в PyCharm окружения. Нажимаем на ОК.
Далее в созданном окружении устанавливаем пакет с библиотекой PySide2, также как мы устанавливали matplotlib. И выходим из настроек.
Теперь мы можем создавать новый проект использующий библиотеку PySide2. В окне приветствия выбираем Create New Project.
В мастере создания проекта, указываем имя расположения проекта в поле Location. Разворачиваем параметры окружения, щелкая по Project Interpreter, где выбираем Existing interpreter и указываем нужное нам окружение pyside2
.
Для проверки работы библиотеки создаем файл second.py
со следующий кодом:
import sys
from PySide2.QtWidgets import QApplication, QLabel
from PySide2 import QtCore
if __name__ == "__main__":
app = QApplication(sys.argv)
label = QLabel(QtCore.qVersion())
label.show()
QtCore.qVersion()
sys.exit(app.exec_())
Далее создаем конфигурацию запуска программы, также как создавали для первого примера. После чего можно выполнить программу.
Заключение
У меня нет богатого опыта программирования на Python. И я не знаком с другими IDE для Python. Поэтому, возможно, данные IDE также умеют работать с Pip и Virtualenv. Использовать Pip и Virtualenv можно в командой строке или в терминале. Установка библиотеки через Pip может завершиться ошибкой. Есть способы установки библиотек без Pip. Также создавать виртуальные окружения можно не только с помощью Virtualenv.
В общем, я лишь поделился небольшой частью опыта из данной области. Но, если не вдаваться в глубокие дебри, то этого вполне достаточно знать, чтобы писать простые программы на Python с использованием сторонних библиотек.
The following script shows how to extend EnvBuilder
by implementing a
subclass which installs setuptools and pip into a created virtual environment:
import os import os.path from subprocess import Popen, PIPE import sys from threading import Thread from urllib.parse import urlparse from urllib.request import urlretrieve import venv class ExtendedEnvBuilder(venv.EnvBuilder): """ This builder installs setuptools and pip so that you can pip or easy_install other packages into the created virtual environment. :param nodist: If True, setuptools and pip are not installed into the created virtual environment. :param nopip: If True, pip is not installed into the created virtual environment. :param progress: If setuptools or pip are installed, the progress of the installation can be monitored by passing a progress callable. If specified, it is called with two arguments: a string indicating some progress, and a context indicating where the string is coming from. The context argument can have one of three values: 'main', indicating that it is called from virtualize() itself, and 'stdout' and 'stderr', which are obtained by reading lines from the output streams of a subprocess which is used to install the app. If a callable is not specified, default progress information is output to sys.stderr. """ def __init__(self, *args, **kwargs): self.nodist = kwargs.pop('nodist', False) self.nopip = kwargs.pop('nopip', False) self.progress = kwargs.pop('progress', None) self.verbose = kwargs.pop('verbose', False) super().__init__(*args, **kwargs) def post_setup(self, context): """ Set up any packages which need to be pre-installed into the virtual environment being created. :param context: The information for the virtual environment creation request being processed. """ os.environ['VIRTUAL_ENV'] = context.env_dir if not self.nodist: self.install_setuptools(context) # Can't install pip without setuptools if not self.nopip and not self.nodist: self.install_pip(context) def reader(self, stream, context): """ Read lines from a subprocess' output stream and either pass to a progress callable (if specified) or write progress information to sys.stderr. """ progress = self.progress while True: s = stream.readline() if not s: break if progress is not None: progress(s, context) else: if not self.verbose: sys.stderr.write('.') else: sys.stderr.write(s.decode('utf-8')) sys.stderr.flush() stream.close() def install_script(self, context, name, url): _, _, path, _, _, _ = urlparse(url) fn = os.path.split(path)[-1] binpath = context.bin_path distpath = os.path.join(binpath, fn) # Download script into the virtual environment's binaries folder urlretrieve(url, distpath) progress = self.progress if self.verbose: term = '\n' else: term = '' if progress is not None: progress('Installing %s ...%s' % (name, term), 'main') else: sys.stderr.write('Installing %s ...%s' % (name, term)) sys.stderr.flush() # Install in the virtual environment args = [context.env_exe, fn] p = Popen(args, stdout=PIPE, stderr=PIPE, cwd=binpath) t1 = Thread(target=self.reader, args=(p.stdout, 'stdout')) t1.start() t2 = Thread(target=self.reader, args=(p.stderr, 'stderr')) t2.start() p.wait() t1.join() t2.join() if progress is not None: progress('done.', 'main') else: sys.stderr.write('done.\n') # Clean up - no longer needed os.unlink(distpath) def install_setuptools(self, context): """ Install setuptools in the virtual environment. :param context: The information for the virtual environment creation request being processed. """ url = 'https://bitbucket.org/pypa/setuptools/downloads/ez_setup.py' self.install_script(context, 'setuptools', url) # clear up the setuptools archive which gets downloaded pred = lambda o: o.startswith('setuptools-') and o.endswith('.tar.gz') files = filter(pred, os.listdir(context.bin_path)) for f in files: f = os.path.join(context.bin_path, f) os.unlink(f) def install_pip(self, context): """ Install pip in the virtual environment. :param context: The information for the virtual environment creation request being processed. """ url = 'https://raw.github.com/pypa/pip/master/contrib/get-pip.py' self.install_script(context, 'pip', url) def main(args=None): compatible = True if sys.version_info < (3, 3): compatible = False elif not hasattr(sys, 'base_prefix'): compatible = False if not compatible: raise ValueError('This script is only for use with ' 'Python 3.3 or later') else: import argparse parser = argparse.ArgumentParser(prog=__name__, description='Creates virtual Python ' 'environments in one or ' 'more target ' 'directories.') parser.add_argument('dirs', metavar='ENV_DIR', nargs='+', help='A directory in which to create the 'virtual environment.') parser.add_argument('--no-setuptools', default=False, action='store_true', dest='nodist', help="Don't install setuptools or pip in the " "virtual environment.") parser.add_argument('--no-pip', default=False, action='store_true', dest='nopip', help="Don't install pip in the virtual " "environment.") parser.add_argument('--system-site-packages', default=False, action='store_true', dest='system_site', help='Give the virtual environment access to the ' 'system site-packages dir.') if os.name == 'nt': use_symlinks = False else: use_symlinks = True parser.add_argument('--symlinks', default=use_symlinks, action='store_true', dest='symlinks', help='Try to use symlinks rather than copies, ' 'when symlinks are not the default for ' 'the platform.') parser.add_argument('--clear', default=False, action='store_true', dest='clear', help='Delete the contents of the ' 'virtual environment ' 'directory if it already ' 'exists, before virtual ' 'environment creation.') parser.add_argument('--upgrade', default=False, action='store_true', dest='upgrade', help='Upgrade the virtual ' 'environment directory to ' 'use this version of ' 'Python, assuming Python ' 'has been upgraded ' 'in-place.') parser.add_argument('--verbose', default=False, action='store_true', dest='verbose', help='Display the output ' 'from the scripts which ' 'install setuptools and pip.') options = parser.parse_args(args) if options.upgrade and options.clear: raise ValueError('you cannot supply --upgrade and --clear together.') builder = ExtendedEnvBuilder(system_site_packages=options.system_site, clear=options.clear, symlinks=options.symlinks, upgrade=options.upgrade, nodist=options.nodist, nopip=options.nopip, verbose=options.verbose) for d in options.dirs: builder.create(d) if __name__ == '__main__': rc = 1 try: main() rc = 0 except Exception as e: print('Error: %s' % e, file=sys.stderr) sys.exit(rc)
Back to top
Edit this page
Toggle table of contents sidebar
via pipx#
virtualenv is a CLI tool that needs a Python interpreter to run. If you already have a Python 3.7+
interpreter the best is to use pipx to install virtualenv into an isolated environment. This has the added
benefit that later you’ll be able to upgrade virtualenv without affecting other parts of the system.
pipx install virtualenv virtualenv --help
via pip#
Alternatively you can install it within the global Python interpreter itself (perhaps as a user package via the
--user
flag). Be cautious if you are using a python install that is managed by your operating system or
another package manager. pip
might not coordinate with those tools, and may leave your system in an
inconsistent state. Note, if you go down this path you need to ensure pip is new enough per the subsections below:
python -m pip install --user virtualenv python -m virtualenv --help
wheel#
Installing virtualenv via a wheel (default with pip) requires an installer that can understand the python-requires
tag (see PEP-503), with pip this is version 9.0.0
(released 2016
November). Furthermore, in case you’re not installing it via the PyPi you need to be using a mirror that correctly
forwards the python-requires
tag (notably the OpenStack mirrors don’t do this, or older
devpi versions — added with version 4.7.0
).
sdist#
When installing via a source distribution you need an installer that handles the
PEP-517 specification. In case of pip
this is version 18.0.0
or
later (released on 2018 July). If you cannot upgrade your pip to support this you need to ensure that the build
requirements from pyproject.toml are satisfied
before triggering the install.
via zipapp#
You can use virtualenv without installing it too. We publish a Python
zipapp, you can just download this from
https://bootstrap.pypa.io/virtualenv.pyz and invoke this package
with a python interpreter:
python virtualenv.pyz --help
The root level zipapp is always the current latest release. To get the last supported zipapp against a given python
minor release use the link https://bootstrap.pypa.io/virtualenv/x.y/virtualenv.pyz
, e.g. for the last virtualenv
supporting Python 3.11 use
https://bootstrap.pypa.io/virtualenv/3.11/virtualenv.pyz.
If you are looking for past version of virtualenv.pyz they are available here:
https://github.com/pypa/get-virtualenv/blob/<virtualenv version>/public/<python version>/virtualenv.pyz?raw=true
latest unreleased#
Installing an unreleased version is discouraged and should be only done for testing purposes. If you do so you’ll need
a pip version of at least 18.0.0
and use the following command:
pip install git+https://github.com/pypa/virtualenv.git@main
Python and OS Compatibility#
virtualenv works with the following Python interpreter implementations:
-
CPython:
3.12 >= python_version >= 3.7
-
PyPy:
3.10 >= python_version >= 3.7
This means virtualenv works on the latest patch version of each of these minor versions. Previous patch versions are
supported on a best effort approach.
CPython is shipped in multiple forms, and each OS repackages it, often applying some customization along the way.
Therefore we cannot say universally that we support all platforms, but rather specify some we test against. In case
of ones not specified here the support is unknown, though likely will work. If you find some cases please open a feature
request on our issue tracker.
Note:
-
as of
20.18.0
–2023-02-06
– we no longer support running under Python<=3.6
, -
as of
20.22.0
–2023-04-19
– we no longer support creating environments for Python<=3.6
.
Linux#
-
installations from python.org
-
Ubuntu 16.04+ (both upstream and deadsnakes builds)
-
Fedora
-
RHEL and CentOS
-
OpenSuse
-
Arch Linux
macOS#
In case of macOS we support:
-
installations from python.org,
-
python versions installed via brew,
-
Python 3 part of XCode (Python framework —
/Library/Frameworks/Python3.framework/
).
Windows#
-
Installations from python.org
-
Windows Store Python — note only version 3.7+