How to install boost windows

A note to Cygwin and MinGW users

If you plan to use your tools from the Windows command prompt,
you’re in the right place. If you plan to build from the Cygwin
bash shell, you’re actually running on a POSIX platform and
should follow the instructions for getting started on Unix
variants. Other command shells, such as MinGW’s MSYS, are
not supported—they may or may not work.

Index

  • 1   Get Boost
  • 2   The Boost Distribution
  • 3   Header-Only Libraries
  • 4   Build a Simple Program Using Boost
    • 4.1   Build From the Visual Studio IDE
    • 4.2   Or, Build From the Command Prompt
    • 4.3   Errors and Warnings
  • 5   Prepare to Use a Boost Library Binary
    • 5.1   Simplified Build From Source
    • 5.2   Or, Build Binaries From Source
      • 5.2.1   Install Boost.Build
      • 5.2.2   Identify Your Toolset
      • 5.2.3   Select a Build Directory
      • 5.2.4   Invoke b2
    • 5.3   Expected Build Output
    • 5.4   In Case of Build Errors
  • 6   Link Your Program to a Boost Library
    • 6.1   Link From Within the Visual Studio IDE
    • 6.2   Or, Link From the Command Prompt
    • 6.3   Library Naming
    • 6.4   Test Your Program
  • 7   Conclusion and Further Resources

2   The Boost Distribution

This is a sketch of the resulting directory structure:

boost_1_82_0\ .................The “boost root directory”
   index.htm .........A copy of www.boost.org starts here
   boost\ .........................All Boost Header files
   lib\ .....................precompiled library binaries
   libs\ ............Tests, .cpps, docs, etc., by library
     index.html ........Library documentation starts here
     algorithm\
     any\
     array\
                     …more libraries…
   status\ .........................Boost-wide test suite
   tools\ ...........Utilities, e.g. Boost.Build, quickbook, bcp
   more\ ..........................Policy documents, etc.
   doc\ ...............A subset of all Boost library docs

It’s important to note the following:

  1. The path to the boost root directory (often C:\Program Files\boost\boost_1_82_0) is
    sometimes referred to as $BOOST_ROOT in documentation and
    mailing lists .

  2. To compile anything in Boost, you need a directory containing
    the boost\ subdirectory in your #include path. Specific steps for setting up #include
    paths in Microsoft Visual Studio follow later in this document;
    if you use another IDE, please consult your product’s
    documentation for instructions.

  3. Since all of Boost’s header files have the .hpp extension,
    and live in the boost\ subdirectory of the boost root, your
    Boost #include directives will look like:

    #include <boost/whatever.hpp>
    

    or

    #include "boost/whatever.hpp"
    

    depending on your preference regarding the use of angle bracket
    includes. Even Windows users can (and, for
    portability reasons, probably should) use forward slashes in
    #include directives; your compiler doesn’t care.

  4. Don’t be distracted by the doc\ subdirectory; it only
    contains a subset of the Boost documentation. Start with
    libs\index.html if you’re looking for the whole enchilada.

4   Build a Simple Program Using Boost

To keep things simple, let’s start by using a header-only library.
The following program reads a sequence of integers from standard
input, uses Boost.Lambda to multiply each number by three, and
writes them to standard output:

#include <boost/lambda/lambda.hpp>
#include <iostream>
#include <iterator>
#include <algorithm>

int main()
{
    using namespace boost::lambda;
    typedef std::istream_iterator<int> in;

    std::for_each(
        in(std::cin), in(), std::cout << (_1 * 3) << " " );
}

Copy the text of this program into a file called example.cpp.

4.1   Build From the Visual Studio IDE

  • From Visual Studio’s File menu, select New > Project…

  • In the left-hand pane of the resulting New Project dialog,
    select Visual C++ > Win32.

  • In the right-hand pane, select Win32 Console Application
    (VS8.0) or Win32 Console Project (VS7.1).

  • In the name field, enter “example”

  • Right-click example in the Solution Explorer pane and
    select Properties from the resulting pop-up menu

  • In Configuration Properties > C/C++ > General > Additional Include
    Directories
    , enter the path to the Boost root directory, for example

    C:\Program Files\boost\boost_1_82_0

  • In Configuration Properties > C/C++ > Precompiled Headers, change
    Use Precompiled Header (/Yu) to Not Using Precompiled
    Headers
    .2

  • Replace the contents of the example.cpp generated by the IDE
    with the example code above.

  • From the Build menu, select Build Solution.

To test your application, hit the F5 key and type the following
into the resulting window, followed by the Return key:

1 2 3

Then hold down the control key and press «Z», followed by the
Return key.

skip to the next step

4.2   Or, Build From the Command Prompt

From your computer’s Start menu, if you are a Visual
Studio 2005 user, select

All Programs > Microsoft Visual Studio 2005
> Visual Studio Tools > Visual Studio 2005 Command Prompt

or, if you’re a Visual Studio .NET 2003 user, select

All Programs > Microsoft Visual Studio .NET 2003
> Visual Studio .NET Tools > Visual Studio .NET 2003 Command Prompt

to bring up a special command prompt window set up for the
Visual Studio compiler. In that window, set the current
directory to a suitable location for creating some temporary
files and type the following command followed by the Return key:

cl /EHsc /I path\to\boost_1_82_0 path\to\example.cpp

To test the result, type:

echo 1 2 3 | example

4.3   Errors and Warnings

Don’t be alarmed if you see compiler warnings originating in Boost
headers. We try to eliminate them, but doing so isn’t always
practical.4 Errors are another matter. If you’re
seeing compilation errors at this point in the tutorial, check to
be sure you’ve copied the example program correctly and that you’ve
correctly identified the Boost root directory.

5   Prepare to Use a Boost Library Binary

If you want to use any of the separately-compiled Boost libraries,
you’ll need to acquire library binaries.

5.1   Simplified Build From Source

If you wish to build from source with Visual C++, you can use a
simple build procedure described in this section. Open the command prompt
and change your current directory to the Boost root directory. Then, type
the following commands:

bootstrap
.\b2

The first command prepares the Boost.Build system for use. The second
command invokes Boost.Build to build the separately-compiled Boost
libraries. Please consult the Boost.Build documentation for a list
of allowed options.

5.2   Or, Build Binaries From Source

If you’re using an earlier version of Visual C++, or a compiler
from another vendor, you’ll need to use Boost.Build to create your
own binaries.

5.2.1   Install Boost.Build

Boost.Build is a text-based system for developing, testing, and
installing software. First, you’ll need to build and
install it. To do this:

  1. Go to the directory tools\build\.
  2. Run bootstrap.bat
  3. Run b2 install —prefix=PREFIX where PREFIX is
    the directory where you want Boost.Build to be installed
  4. Add PREFIX\bin to your PATH environment variable.

5.2.3   Select a Build Directory

Boost.Build will place all intermediate files it generates while
building into the build directory. If your Boost root
directory is writable, this step isn’t strictly necessary: by
default Boost.Build will create a bin.v2/ subdirectory for that
purpose in your current working directory.

5.2.4   Invoke b2

Change your current directory to the Boost root directory and
invoke b2 as follows:

b2 --build-dir=build-directory toolset=toolset-name --build-type=complete stage

For a complete description of these and other invocation options,
please see the Boost.Build documentation.

For example, your session might look like this:3

C:\WINDOWS> cd C:\Program Files\boost\boost_1_82_0
C:\Program Files\boost\boost_1_82_0> b2 ^
More? --build-dir="C:\Documents and Settings\dave\build-boost" ^
More? --build-type=complete msvc stage

Be sure to read this note about the appearance of ^,
More? and quotation marks («) in that line.

The option “—build-type=complete” causes Boost.Build to build
all supported variants of the libraries. For instructions on how to
build only specific variants, please ask on the Boost Users’ mailing
list.

Building the special stage target places Boost
library binaries in the stage\lib\ subdirectory of
the Boost tree. To use a different directory pass the
—stagedir=directory option to b2.

Note

b2 is case-sensitive; it is important that all the
parts shown in bold type above be entirely lower-case.

For a description of other options you can pass when invoking
b2, type:

b2 --help

In particular, to limit the amount of time spent building, you may
be interested in:

  • reviewing the list of library names with —show-libraries
  • limiting which libraries get built with the —with-library-name or —without-library-name options
  • choosing a specific build variant by adding release or
    debug to the command line.

Note

Boost.Build can produce a great deal of output, which can
make it easy to miss problems. If you want to make sure
everything is went well, you might redirect the output into a
file by appending “>build.log 2>&1” to your command line.

5.3   Expected Build Output

During the process of building Boost libraries, you can expect to
see some messages printed on the console. These may include

  • Notices about Boost library configuration—for example, the Regex
    library outputs a message about ICU when built without Unicode
    support, and the Python library may be skipped without error (but
    with a notice) if you don’t have Python installed.

  • Messages from the build tool that report the number of targets
    that were built or skipped. Don’t be surprised if those numbers
    don’t make any sense to you; there are many targets per library.

  • Build action messages describing what the tool is doing, which
    look something like:

    toolset-name.c++ long/path/to/file/being/built
    
  • Compiler warnings.

5.4   In Case of Build Errors

The only error messages you see when building Boost—if any—should
be related to the IOStreams library’s support of zip and bzip2
formats as described here. Install the relevant development
packages for libz and libbz2 if you need those features. Other
errors when building Boost libraries are cause for concern.

If it seems like the build system can’t find your compiler and/or
linker, consider setting up a user-config.jam file as described
here. If that isn’t your problem or the user-config.jam file
doesn’t work for you, please address questions about configuring Boost
for your compiler to the Boost Users’ mailing list.

6   Link Your Program to a Boost Library

To demonstrate linking with a Boost binary library, we’ll use the
following simple program that extracts the subject lines from
emails. It uses the Boost.Regex library, which has a
separately-compiled binary component.

#include <boost/regex.hpp>
#include <iostream>
#include <string>

int main()
{
    std::string line;
    boost::regex pat( "^Subject: (Re: |Aw: )*(.*)" );

    while (std::cin)
    {
        std::getline(std::cin, line);
        boost::smatch matches;
        if (boost::regex_match(line, matches, pat))
            std::cout << matches[2] << std::endl;
    }
}

There are two main challenges associated with linking:

  1. Tool configuration, e.g. choosing command-line options or IDE
    build settings.
  2. Identifying the library binary, among all the build variants,
    whose compile configuration is compatible with the rest of your
    project.

Auto-Linking

Most Windows compilers and linkers have so-called “auto-linking
support,” which eliminates the second challenge. Special code in
Boost header files detects your compiler options and uses that
information to encode the name of the correct library into your
object files; the linker selects the library with that name from
the directories you’ve told it to search.

The GCC toolchains (Cygwin and MinGW) are notable exceptions;
GCC users should refer to the linking instructions for Unix
variant OSes for the appropriate command-line options to use.

6.1   Link From Within the Visual Studio IDE

Starting with the header-only example project we created
earlier:

  1. Right-click example in the Solution Explorer pane and
    select Properties from the resulting pop-up menu
  2. In Configuration Properties > Linker > Additional Library
    Directories
    , enter the path to the Boost binaries,
    e.g. C:\Program Files\boost\boost_1_82_0\lib\.
  3. From the Build menu, select Build Solution.

skip to the next step

6.2   Or, Link From the Command Prompt

For example, we can compile and link the above program from the
Visual C++ command-line by simply adding the bold text below to
the command line we used earlier, assuming your Boost binaries are
in C:\Program Files\boost\boost_1_82_0\lib:

cl /EHsc /I path\to\boost_1_82_0 example.cpp   ^
     /link /LIBPATH:C:\Program Files\boost\boost_1_82_0\lib

6.3   Library Naming

Note

If, like Visual C++, your compiler supports auto-linking,
you can probably skip to the next step.

In order to choose the right binary for your build configuration
you need to know how Boost binaries are named. Each library
filename is composed of a common sequence of elements that describe
how it was built. For example,
libboost_regex-vc71-mt-d-x86-1_34.lib can be broken down into the
following elements:

lib
Prefix: except on Microsoft Windows, every Boost library
name begins with this string. On Windows, only ordinary static
libraries use the lib prefix; import libraries and DLLs do
not.5
boost_regex
Library name: all boost library filenames begin with boost_.
-vc71
Toolset tag: identifies the toolset and version used to build
the binary.
-mt
Threading tag: indicates that the library was
built with multithreading support enabled. Libraries built
without multithreading support can be identified by the absence
of -mt.
-d

ABI tag: encodes details that affect the library’s
interoperability with other compiled code. For each such
feature, a single letter is added to the tag:

Key Use this library when: Boost.Build option
s linking statically to the C++ standard library and compiler runtime support
libraries.
runtime-link=static
g using debug versions of the standard and runtime support libraries. runtime-debugging=on
y using a special debug build of Python. python-debugging=on
d building a debug version of your code.6 variant=debug
p using the STLPort standard library rather than the default one supplied with
your compiler.
stdlib=stlport

For example, if you build a debug version of your code for use
with debug versions of the static runtime library and the
STLPort standard library,
the tag would be: -sgdp. If none of the above apply, the
ABI tag is ommitted.

-x86

Architecture and address model tag: in the first letter, encodes the architecture as follows:

Key Architecture Boost.Build option
x x86-32, x86-64 architecture=x86
a ARM architecture=arm
i IA-64 architecture=ia64
s Sparc architecture=sparc
m MIPS/SGI architecture=mips*
p RS/6000 & PowerPC architecture=power

The two digits following the letter encode the address model as follows:

Key Address model Boost.Build option
32 32 bit address-model=32
64 64 bit address-model=64
-1_34
Version tag: the full Boost release number, with periods
replaced by underscores. For example, version 1.31.1 would be
tagged as «-1_31_1».
.lib
Extension: determined according to the operating system’s usual
convention. On most unix-style platforms the extensions are
.a and .so for static libraries (archives) and shared
libraries, respectively. On Windows, .dll indicates a shared
library and .lib indicates a
static or import library. Where supported by toolsets on unix
variants, a full version extension is added (e.g. «.so.1.34») and
a symbolic link to the library file, named without the trailing
version number, will also be created.

6.4   Test Your Program

To test our subject extraction, we’ll filter the following text
file. Copy it out of your browser and save it as jayne.txt:

To: George Shmidlap
From: Rita Marlowe
Subject: Will Success Spoil Rock Hunter?
---
See subject.

Now, in a command prompt window, type:

path\to\compiled\example < path\to\jayne.txt

The program should respond with the email subject, “Will Success
Spoil Rock Hunter?”

7   Conclusion and Further Resources

This concludes your introduction to Boost and to integrating it
with your programs. As you start using Boost in earnest, there are
surely a few additional points you’ll wish we had covered. One day
we may have a “Book 2 in the Getting Started series” that addresses
them. Until then, we suggest you pursue the following resources.
If you can’t find what you need, or there’s anything we can do to
make this document clearer, please post it to the Boost Users’
mailing list.

  • Boost.Build reference manual
  • Boost Users’ mailing list
  • Index of all Boost library documentation

Onward

Good luck, and have fun!

—the Boost Developers


[1] We recommend
downloading boost_1_82_0.7z and using 7-Zip to decompress
it. We no longer recommend .zip files for Boost because they are twice
as large as the equivalent .7z files. We don’t recommend using Windows’
built-in decompression as it can be painfully slow for large archives.
[2] There’s no problem using Boost with precompiled headers;
these instructions merely avoid precompiled headers because it
would require Visual Studio-specific changes to the source code
used in the examples.
[3]

In this example, the caret character ^ is a
way of continuing the command on multiple lines, and must be the
final character used on the line to be continued (i.e. do
not follow it with spaces). The command prompt responds with
More? to prompt for more input. Feel free to omit the
carets and subsequent newlines; we used them so the example
would fit on a page of reasonable width.

The command prompt treats each bit of whitespace in the command
as an argument separator. That means quotation marks («)
are required to keep text together whenever a single
command-line argument contains spaces, as in

--build-dir="C:\Documents_and_Settings\dave\build-boost"

Also, for example, you can’t add spaces around the = sign as in

--build-dir_=_"C:\Documents and Settings\dave\build-boost"
[4] Remember that warnings are specific to each compiler
implementation. The developer of a given Boost library might
not have access to your compiler. Also, some warnings are
extremely difficult to eliminate in generic code, to the point
where it’s not worth the trouble. Finally, some compilers don’t
have any source code mechanism for suppressing warnings.
[5] This convention distinguishes the static version of
a Boost library from the import library for an
identically-configured Boost DLL, which would otherwise have the
same name.
[6] These libraries were compiled without optimization
or inlining, with full debug symbols enabled, and without
NDEBUG #defined. Although it’s true that sometimes
these choices don’t affect binary compatibility with other
compiled code, you can’t count on that with Boost libraries.

Boost library is a set of a popular collection of peer-reviewed, free, open-source C++ libraries. It supports a number of tasks such as unit testing, image processing, multithreading, and mathematical aspects such as linear algebra and regular expressions. You can also store, numbers that are out of range of long long, or double. It was first made available on September 1st, 1999. There are 164 different libraries in it. In this article, we will learn, how to install the boost library in C++ on Windows. 

Installing Boost Library in C++ on Windows:

Step 1: Go to Boost.org. Click on the Downloads option on the right side.

go to boost.org

Step 2: Click on the boost_1_72_0.zip file, to download the required boost library. It has an approx. size of 200MB

download the boost zip to install boost library in c++

Step 3: Now, open the location where your zip file is downloaded. For example: This PC > Local Disk (C:) > Users > jh > Downloads >

open folder location of the boost library.

Step 4: Select the zip file. Right-Click on it, and select Extract All… 

extract the zip file at the same location

Step 5: The files get extracted at the same location, with the same folder name. Now, go to Program Files, and create a new folder name Boost

create a new folder name boost in program files

Step 6: Now, copy the extracted folder boost_1_72_0 into the boost folder. Hence, the boost library is installed into our system. 

copy, the extracted folder into the boost folder.

wait for the folder to move into boost folder, and the installation of the boost library is completed.

Verify the Installation of the Boost Library in C++ 

The successful compilation of the code will prove that the boost library is installed in windows. 

C++

#include <boost/array.hpp>

#include <iostream>

using namespace std;

int main()

{

    boost::array<int, 10> arr

        = { { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 } };

    for (int i = 0; i < 10; i++) {

        cout << "Geek Rank is :" << arr[i] << "*"

             << "\n";

    }

    return 0;

}

Output:

Geek Rank is :1*
Geek Rank is :2*
Geek Rank is :3*
Geek Rank is :4*
Geek Rank is :5*
Geek Rank is :6*
Geek Rank is :7*
Geek Rank is :8*
Geek Rank is :9*
Geek Rank is :10*

Last Updated :
16 Oct, 2022

Like Article

Save Article

Boost is a set of high-quality libraries that speed up C++ development. They are included in most linux distributions and some of them are already part of the C++ Standard Library. In the Windows environment, you have to install them in order to take advantage of them.

If you are using Microsoft Visual Studio, you can avoid the following steps by downloading a binary version from http://www.boostpro.com/download/ and skip to the Testing section in this document.

Before we start, you may want to read my previous article on installing a C++ compiler on Windows.

Installation

Download and unzip the boost source code from http://www.boost.org/. I will unzip it to C:optc-libs, but you can use the one you prefer. After you unzip, open a command line and go to your selected folder:

cd C:optc-libsboost_1_51_0

Start bootstrap.bat and specify your toolset. Toolsets supported by this script are: borland, como, gcc, gcc-nocygwin, intel-win32, metrowerks, mingw, msvc, vc7, vc8, vc9, vc10, vc11. In my case I will use the mingw toolset:

bootstrap.bat mingw

All required files for compilation should be ready. Now you have to define a installation directory and specify a toolset. Toolsets here are a little bit different from the ones we used before:

  • acc: Hewlett Packard, Only very recent versions are known to work well with Boost
  • borland: borland
  • como: Comeau Computing, Using this toolset may require configuring another toolset to act as its backend
  • darwin: Apple, Apple’s version of the GCC toolchain with support for Darwin and MacOS X features such as frameworks.
  • gcc: The Gnu Project, including Cygwin and MinGW
  • hp_cxx: Hewlett Packard, Targeted at the Tru64 operating system.
  • intel: Intel****
  • msvc: Microsoft
  • sun: Sun, Only very recent versions are known to work well with Boost.
  • vacpp: IBM, The VisualAge C++ compiler.

Since I’m using MinGW I will use gcc.

b2 install --prefix=c:/installation/path toolset=gcc

At this time you can go get a cup of coffee. Or maybe two.

When compilation ends, go to your selected installation path (watch out!, this is not the folder where you originally unzipped the source code). You will find two folders: include and lib. Both folders should contain files. That means you are done and ready for the testing phase.

If any of the afore mentioned folders is empty then we have problems. Common problems arise due to selecting the wrong toolset for compiling, so if your lib folder is empty try choosing a different toolset. If error persist, take a look at the compilation output. Errors must be shown there, specially at the last lines of the output.

Testing

From your IDE create a file named main.cpp and copy the following text onto it:

#include <boost/regex.hpp>

int main()
{
    std::string line;
    boost::regex pat( "^Subject: (Re: |Aw: )*(.*)" );

    while (std::cin)
    {
        std::getline(std::cin, line);
        boost::smatch matches;
        if (boost::regex_match(line, matches, pat))
            std::cout << matches[2] << std::endl;
    }
}

It’s time to compile (and link)

In order to let your compiler know where to look for the headers and libraries, you have to follow the next steps. You can usually accomplish them by right clicking on your project and selecting Properties or Options.

Add the following path to your includes list:

C:/installation/path/include/boost-version

Add the following path to your additional library directories list

C:/installation/path/lib

Important: if you are using Netbeans, you should only type /installation/path/lib (you have to omit the C:). For a very strange reason, Netbeans adds a forward slash at the beggining of the parameter /L used to compile (only when it begins with C:) resulting in an unknown path. This might be fixed in later versions.

If you are using a gnu compiler (that is Cygwin or MinGW), you must also add the specific library to the linker. If you are using Microsoft Visual Studio you can skip this step because it includes the so called auto-linking support. But, in my case, I have to add the following library to my libraries list so the linker performs without complaints:

C:/installation/path/lib/libboost_regex-mgw47-mt-1_51.a

This file name is composed by:

  • The standard lib prefix. DLL’s do not use it.
  • The library name boost_regex.
  • The toolset used to compile it, in my case mgw47, that is MinGW version 4.7.
  • The threading tag mt, which indicates if the library accepts multithreading.
  • The ABI tag, that can be: d for debugging, s for static linkage or g, y, p which are not covered in this text.
  • The version tag.
  • The extension, which can be .lib or .a.

You are ready. Build the program.

Time to execute it

The program you just compiled (and linked) can parse a text file looking for a line starting with the text “Subject:” in it. So to test it, copy and paste the following text into an empty text file and name it test.txt (save it in the folder where your .exe file resides):

To: George Shmidlap
From: Rita Marlowe
Subject: Will Success Spoil Rock Hunter?
---
See subject.

Now, from a command prompt type:

yourprogram.exe < test.txt

If everything goes right you should see the following text:

Will Success Spoil Rock Hunter?

Conclusion

At this point, boost should be ready on your Windows computer. I suggest you read about this tremendous library since it can help you make your life a lot easier.

Introduction

Boost is easy when you are using headers or pre-compiled binaries for visual studio, but it can be a pain to compile from source on windows, especially when you want the 64-bit version of MinGW to use gcc/g++. This installation process should be thorough enough to simply copy and paste commands, but robust enough to install everything you need.

Note: if you need to install any of the libraries that need dependencies, see this great answer from stack overflow

Get files needed for install

Get the MinGW installer mingw-w64-install.exe from Sourceforge
Get the boost_1_68_0.zip source from Sourceforge
Note: This should work perfectly with other versions of boost as well
Copy these to a new folder
C:\install
It should now contain the following two files

  • mingw-w64-install.exe
  • boost_1_68_0.zip

Install MinGW-w64

Run the installer

Run mingw-w64-install.exe
Click next
Change the Architecture from i868 to x86_64

Click next and keep the default install location
Click next to start the install
Click Finish to exit the installer

After the install, add a hard link (junction) to the folder

Open a command prompt AS ADMIN

  • windows key -> type «cmd»
  • right click «command prompt»
  • Run as administrator
    Enter the following command to create a link to MinGW folder in C:\
    mklink /J C:\MinGW "C:\Program Files\mingw-w64\x86_64-8.1.0-posix-seh-rt_v6-rev0\mingw64"

Add MinGW to the system PATH

Add this to the session and system PATH environment variable
set PATH=%PATH%;C:\MinGW\bin
setx /M PATH "%PATH%"
Check to ensure proper install
g++ --version should return the following info

Install boost

Navigate to install

cd C:\install

unzip to «install/boost_1_68_0»

powershell -command "Expand-Archive C:\install\boost_1_68_0.zip C:\install"
This takes about 15 minutes
cd C:\install\boost_1_68_0

Make directories for building and install

mkdir C:\boost-build
mkdir C:\install\boost_1_68_0\boost-build
mkdir C:\boost

Boost.Build setup

cd C:\install\boost_1_68_0\tools\build
prepare b2
bootstrap.bat gcc
Build boost.build with b2
b2 --prefix="C:\boost-build" install
Add C:\boost-build\bin to your session PATH variable
set PATH=%PATH%;C:\boost-build\bin

Building Boost

navigate back up to the boost unzipped root directory
cd C:\install\boost_1_68_0
Build boost with b2
b2 --build-dir="C:\install\boost_1_68_0\build" --build-type=complete --prefix="C:\boost" toolset=gcc install
This is going to take awhile, so try to run this command right before beginning the director’s cut of Lord of the Ring Return of the King.
When this is done you should see the following output

You can now delete «C:\install» and «C:\boost-build»

Adding to projects

Everything should now be installed
Include folder:
C:\boost\include\boost-1_68
Linker folder:
C:\boost\lib
Link required libraries:
e.g. libboost_atomic-mgw81-mt-d-x64-1_68.a

Table of Contents

  • 1 How install Windows Boost?
  • 2 How do I install boost from source?
  • 3 How to install boost from the source code?
  • 4 How to install the C + + Boost libraries on Windows?

5.2. 1 Install Boost. Build

  1. Go to the directory tools\build\v2\.
  2. Run bootstrap. bat.
  3. Run b2 install –prefix=PREFIX where PREFIX is the directory where you want Boost. Build to be installed.
  4. Add PREFIX\bin to your PATH environment variable.

How do I install boost from source?

5.2 Or, Build Binaries From Source

  1. Go to the directory tools\build\.
  2. Run bootstrap. bat.
  3. Run b2 install –prefix=PREFIX where PREFIX is the directory where you want Boost. Build to be installed.
  4. Add PREFIX\bin to your PATH environment variable.

Does Windows have Pthread?

Windows does not support the pthreads standard natively, therefore the Pthreads4w project seeks to provide a portable and open-source wrapper implementation. It can also be used to port Unix software (which uses pthreads) with little or no modification to the Windows platform.

Does MinGW support Pthread?

The MinGW has already support POSIX threads, In the “MinGW Installation Manager”, we can install the pthreads dev package and pthreads lib.

How to install boost from the source code?

There are several ways of Boost installation. Instead of build from source code, we can use package manager such as MacPorts, Homebrew, Advance Package Tool, etc. In this post we will build Boost from source code. The installation steps (from source code) on OS X and Ubuntu are the similar.

How to install the C + + Boost libraries on Windows?

How to install the C++ Boost Libraries on Windows – Andres Jaimes Boost is a set of high-quality libraries that speed up C++ development. They are included in most linux distributions and some of them are already part of the C++ Standard Library. In the Windows environment, you have to install them in order to take advantage of them.

How to install boost in Windows Command Prompt?

The Boost installation step on Windows is also similar to the installation step on OS X and Ubuntu. The steps are : Open Visual Studio command prompt. I use Visual Studio 2013 x86 Native Tools Command Prompt native tool (I have not test using default Windows Command Prompt) As on OS X and Ubuntu, the last step quite take time.

How to install boost on Windows 1.75.0?

Other command shells, such as MinGW ‘s MSYS, are not supported—they may or may not work. The most reliable way to get a copy of Boost is to download boost_1_75_0.7z or boost_1_75_0.zip and unpack it to install a complete Boost distribution. 1 This is a sketch of the resulting directory structure:

  • How to install windows 7 online
  • How to install make on windows 10
  • How to install dmg on windows
  • How to install windows 7 from usb to usb
  • How to install dll on windows