Что такое канал и частота в роутере

Привет, мой дорогой читатель. Надеюсь, у тебя всё хорошо, и солнышко светит над твоей головой. А сегодня я (маг беспроводных сетей в третьем поколении) поведаю тебе про все тайны частоты Wi-Fi сети. Начнём, наверное, с определения Wi-Fi — это определённый стандарт радиовещания, который используется для распространения нумерованных пакетов данных между двумя или более устройствами. В частности, используется стандарт радиовещания – IEEE 802.11, который был впервые использован компанией Alliance в 1999 году. Сам стандарт был изобретён чуть ранее в 1998 году. Но вы пришли сюда читать про частоту и волны, поэтому поподробнее про них.

Содержание

  1. Радиоволны
  2. 2.4 ГГц
  3. 5 ГГц
  4. Затухание сигнала
  5. Как усиливается сигнал
  6. Задать вопрос автору статьи

Радиоволны

Передача данных происходит путём обычного кодирования, а в последствии перенаправлении кода на передатчик. Он в свою очередь переформатирует электронный сигнал в радиоволну Радиоволна также используется и в передаче информации в мобильной связи, телевидении и также в разогреве еды в микроволновой печи.

Частоты Wi-Fi: 2.4 и 5 ГГц - полный разбор WiFi диапазонов

У волны, как вы наверное помните из физики, есть три характеристики: частота, амплитуда (или высота), а также длина. Именно первая и определяет канал передачи, а также скорость передачи для отдельных более высоких частот.

В частности, изначально с 2000 по 2009 год использовался только один стандарт с частотой 2.4 ГГц. На данный момент он является самым распространенным, так как имеет высокую скорость передачи данных и больший диапазон распространения.

Как уже и было сказано, пока что это основной и лидирующий стандарт передачи данных. На данной частоте работает 13 каналов. Каждый канал имеет ширину в 20 МГц. Давайте взглянем на диаграмму ниже.

Частоты Wi-Fi: 2.4 и 5 ГГц - полный разбор WiFi диапазонов

Как видите, есть ещё и 14 канал, но он не используется в современных роутерах и маршрутизаторах. Также начало волн начинается с 2.400 GHz, а заканчивается на 2.500 GHz. Один канал занимает от 20 до 40 МГц. На картинке выше канал имеет как раз ширину волны 20 МГц. Но современные маршрутизаторы могут использовать более широкий канал в 40 МГц.

Если присмотреться, то начало следующего канала начинается с 2.406 МГц, то есть один канал может перекрещиваться с ещё 5 каналами. Если на одном канале сидит очень много роутеров, то сигнал может ухудшаться из-за потери пакетов, появляются лаги, а приёмнику нужно заново отправлять потерянные данные.

Частоты Wi-Fi: 2.4 и 5 ГГц - полный разбор WiFi диапазонов

Такое часто происходит в многоквартирных домах, когда несколько каналов занимают сразу 2 или даже 3 соседских роутера. На современных аппаратах вся конфигурация подбора каналов происходит в автономном режиме. Когда роутер включается, он ищет максимально отдалённую волну от уже занятых.

ПРИМЕЧАНИЕ! Иногда роутер не может сам выбрать канал, и начинаются прерывания, лаги, падает скорость. Советую прочесть мою статью – где я рассказываю, как правильно выбрать канал и улучшить сигнал.

Также на картинке более ярко выделены каналы, которые не пересекаются — это 1, 6 и 11. В идеале, передача данных в этих каналах будет почти без потерь. Соседние же каналы могут слегка портить связь. Если же стоит настройка с шириной 40 МГц, то канал дополнительно будет пересекаться ещё с пятью другими, что может пагубно влиять на связь.

ВНИМАНИЕ! В Америке использование 12 и 13 каналов запрещено законом. Поэтому, если выбрать в настройках интернет-центра эти диапазоны, то могут быть проблемы с некоторыми устройствами, выпущенными в США.

Как и у любой волны, у подобной есть качество затухания, которое напрямую зависит от частоты. 2.4 ГГц — это дециметровая гипервысокая частота. Длина волны примерно равняется 124.3 – 121.3 мм. При такой частоте скорость передачи данных будет выше, но при этом и радиус вещания не будет страдать.

На 2.4 ГГц работают такие стандарты как:

  1. 802.11a
  2. 802.11b
  3. 802.11g
  4. 802.11h
  5. 802.11i
  6. 802.11n

Чаще всего используются именно b, g и n. Первые два уже устаревают, но все же пока осталось достаточно много устройств, работающих на этих стандартах. Скорость передачи у них от 11 до 54 Мбит/c. Последний N – более новый стандарт, изобретённый в 2009 году. Скорость передачи может достигать 600 Мбит/с при нескольких потоках. На одном потоке максимальная скорость – 300 Мбит/с.

5 ГГц

Данный стандарт был введен совершенно недавно. Диапазон частот варьируется от 5,170 ГГц до 5,905. Используются стандарты типа 802.11a, h, j, n и ac. Как вы заметили, N тоже совместим с данной частотой. Поэтому две сети могу существовать и работать как одно целое. Скорость передачи данных вырастает до нескольких гигабит в секунду. Это обусловлено как раз увеличением частоты в два раза.

С увеличение частоты увеличивается и скорость передачи данных, но растёт затухание. Даже если не будет никаких препятствий, то волна затухнет куда быстрее. Именно поэтому эту частоту чаще используют в небольшом радиусе. Например, для подключения телевизора, компьютера или ноутбук вблизи роутера.

Также большим минусом данной частоты является её неустойчивость к препятствиям. То есть она ещё сильнее затухает от стен, стекла, металла, деревьев чем волна 2.4 ГГц. Для увеличения скорости применяется ещё одна ширина канала – в 80 МГц. На данный момент её использовать вполне реально, так как количество каналов – 180, да и роутеров с поддержкой 5 ГГц не так много. Поэтому каналы у «пятёрки» свободнее.

Затухание сигнала

Напрямую зависит от препятствия. Чем больше ширина препятствия, тем сильнее затухание. Также нужно учитывать и материал. Вот таблица примерного затухания.

Материал Ширина (см) Потери сигнала в dB (П) Процент потери в диапазоне (%)
Улица без препятствий 0 0 0
Железобетон 5 25 90
Стекло 0.5 3 26
Дерево 2 9 45
Бетон 15 20 75
Бетон 31 23 82

Расчёт по этой формуле:

W*(100% – П%) =D

  • W – это полный радиус действия волны без препятствий.
  • П – это процент потери диапазона.
  • D – это окончательный диапазон волны после расчёта.

Приведём пример: дальность действия волны W равна 150 метрам на открытой местности. Мы поставим на пути волны стекло в 1 см. Тогда 150*(100% – 26%*2) = 72 метров. Как вы, наверное, увидели, самым серьезным препятствием – является металл. При правильном использовании его можно использовать как отражатель волны.

Также к более плохой связи можно отнести способность огибать препятствие. И эта характеристика также зависит от длины волны. Так как 2.4 ГГц имеет большую длину волны, то она способна почти без потерь обогнуть более широкое препятствие чем волна 5 ГГц. То есть чем больше длина, тем ниже скорость передачи, но меньше затухание от препятствий.

К затуханию можно приписать также естественную потерю мощности сигнала, которая уменьшается со временем пучка волны. От преград волна, также как и свет, может отражаться. Чем больше отражается волна, тем слабее становится сигнал. Именно поэтому нельзя точно сказать, насколько далеко будет бить тот или иной роутер.

Частоты Wi-Fi: 2.4 и 5 ГГц - полный разбор WiFi диапазонов

Как усиливается сигнал

В более дорогих моделях используется схема MIMO. То есть передача данных происходит сразу в несколько потоков. При использовании данные разбиваются на число частей схемы MIMO и одновременно отправляются на приёмник. Но приёмник также должен поддерживать эту технологию.

Например, таким образом можно достичь скорости 7 Гбит/с, если использовать схему 8xMU-MIMO. То есть у данного роутера должно обязательно стоять до 8 антенн или больше. Каждая антенна будет отправлять свой сигнал, а в конце они будут складываться.

Дома чаще всего используют именно антенны широкого действия. Они обладают меньшим коэффициентом усиления, но сам пучок имеет больший радиус. Станет более понятно, если вы взгляните на картинку ниже. При увеличении dB пучок становится более узким. Именно поэтому на мощных вай-фай роутерах для увеличения покрытия используют сразу несколько мощных антенн.

Частоты Wi-Fi: 2.4 и 5 ГГц - полный разбор WiFi диапазонов

Когда Вы используете маршрутизатор Wi-Fi, существует множество различных факторов, которые могут повлиять на покрытие сигнала и, следовательно, снизить скорость беспроводной сети и Интернета.

Каналы Wi-Fi — это небольшие слоты во всем диапазоне частот Wi-Fi, которые могут использоваться вашей беспроводной сетью как для отправки, так и для получения данных.

Ваш маршрутизатор Wi-Fi и клиентские устройства обычно поддерживают полосы частот 2,4 ГГц и 5 ГГц, и у каждого из них есть определенное количество каналов (частотных слотов).

Всего имеется 11 каналов Wi-Fi в полосе пропускания 2,4 ГГц (для Северной Америки), 3 из которых не перекрываются.

В диапазоне 5 ГГц доступны 24 непересекающихся канала из 45, однако не все каналы можно настроить на устройствах.

Например, в диапазоне 5 ГГц есть несколько каналов, обозначенных как DFS (динамический выбор частоты), на которые может влиять активность радара. Поэтому рекомендуется избегать этих каналов DFS и использовать доступные каналы без DFS для уменьшения помех.

Вы хотите использовать каналы с наименьшими помехами в данный момент времени. Важно понимать различные каналы, потому что некоторые каналы используются чаще и имеют больший трафик и перегруженность, чем другие.

Ключ в том, чтобы использовать каналы, которые не перекрываются. Поскольку каждый канал на любой частоте перекрывается с соседними каналами, вы можете выбрать каналы, которые разделены без какого-либо перекрытия.

В диапазоне частот 2,4 ГГц имеется 3 непересекающихся канала, а в диапазоне 5 ГГц — 24.

Когда вы используете полосу частот 2,4 ГГц, все каналы работают между частотами 2400 и 2500 МГц (в некоторых странах этот диапазон ниже).

Есть 11 каналов, и каждому доступно 20 МГц. В результате происходит некоторое дублирование.

Каждый канал перекрывается с двумя или более другими каналами. Это важно знать, потому что, если у вас есть одно устройство на канале 4, а другое на канале 5, они перекрываются, поэтому у вас не будет разделения, которое вы ищете, и у вас будут помехи.

Когда вы выбираете лучший канал для частот 2,4 ГГц, вы должны выбирать каналы, которые разнесены достаточно далеко друг от друга, чтобы они не перекрывались.

Вы можете использовать каналы 1, 6 и 11 и знать, что между этими тремя нет перекрытия. Поэтому лучшие каналы для 2,4 ГГц — это 1, 6 и 11.

2.4 GHz

Они разнесены достаточно далеко друг от друга, и вы можете использовать их, не беспокоясь о помехах.

Тем не менее, вы должны учитывать, насколько близко вы находитесь к своим соседям. Если вы живете в многоквартирном доме и используете канал 1, а ваш сосед также использует каналы 1 или 2, вы будете использовать перекрывающиеся каналы и снова возникнут помехи.

Если вы заметили низкую скорость на своем канале, лучше всего выбрать один из остальных. Вы можете переключаться между этими тремя каналами, чтобы найти тот, который имеет самый низкий уровень шума беспроводной сети.

Какой канал лучше для 5ГГц Wi-Fi?

Когда Вы используете частоту 5 ГГц для своего Wi-Fi, у вас есть гораздо больше возможностей. Есть 24 (из 45) непересекающихся каналов 20 МГц, поэтому вы сможете найти тот, который свободен от помех.

Однако имейте в виду, что не все каналы доступны для настройки на маршрутизаторах Wi-Fi. Кроме того, как указывалось ранее, рекомендуется использовать каналы без DFS, на которые не влияет активность радара. Вот почему в приведенной выше таблице показаны только каналы без DFS, хотя в диапазоне 5 ГГц их намного больше.

Также обратите внимание, что полоса 5 ГГц включает в себя ширину канала выше стандартных 20 МГц на канал. Это обеспечивает более высокую скорость передачи данных.

  • Если Вы используете ширину канала 20 МГц, вы можете использовать каналы 36, 40, 44, 48, 149, 153, 157, 161 и 165 (каналы без DFS).
  • Если вы хотите использовать ширину канала 40 МГц, вам нужно будет использовать 38, 46, 151, 159. Это гарантирует, что вы не перекрываетесь при использовании большей ширины канала (опять же без DFS).
  • Для 80 МГц вы можете использовать 42 или 155. Имейте в виду, что канал 165 поддерживает только ширину канала 20 МГц. Обратите внимание, что чем шире ширина канала, тем меньше доступных каналов.

Лучший канал для использования зависит от того, сколько других устройств в вашем районе используют те же каналы.

Это включает в себя ваш дом, но также включает соседей и устройства, которые они подключили.

Если вы используете много подключенных устройств, вам следует придерживаться меньшей ширины канала, но если у вас меньше подключений, вы можете использовать каналы 80 МГц для более высоких скоростей.

Итак, в основном, чтобы найти лучший канал 5 ГГц, вам нужно проверить спектр беспроводной сети и посмотреть, какие другие устройства в этом районе используют каждый канал. Затем выберите канал, который больше никто не использует.

Какой канал Wi-Fi самый быстрый?

Во-первых, вам нужно знать, что диапазон частот 5 ГГц обеспечивает самые высокие скорости Wi-Fi, но он охватывает более короткие расстояния. Если у вас быстрое подключение к Интернету (выше 100 Мбит/с), вам необходимо подключиться к полосе 5 ГГц вашего Wi-Fi-роутера, чтобы в полной мере использовать скорость быстрой линии Интернета.

Полоса частот 2,4 ГГц обеспечивает более низкие скорости, но охватывает большее расстояние по сравнению с полосой частот 5 ГГц.

Теперь для самого быстрого канала Wi-Fi в вашем доме вы должны выбрать диапазон 5 ГГц, а затем найти один из упомянутых выше каналов с наименьшими помехами.

Хотя в диапазоне 5 ГГц доступно много каналов, рекомендуется выбрать один из каналов без DFS (особенно если вы находитесь недалеко от аэропорта с активностью радаров).

Используйте одно из доступных приложений Wi-Fi Analyzer, чтобы сначала увидеть, какие каналы уже используются в вашем доме (в диапазоне 5 ГГц), а затем используйте один из доступных каналов (т. е. не используется соседями и т. д.), чтобы добиться самого быстрого Wi-Fi. скорость.

Распределение каналов в диапазоне 5 ГГц

На следующем рисунке от специалистов по беспроводным локальным сетям показано распределение каналов 5 ГГц.

5GHz-Channel-Allocations

Как видите, весь спектр разбит на 4 категории каналов:

  • UNII-1 (no DFS)
  • UNII-2a (DFS)
  • UNII-2c (DFS)
  • UNII-3 (no DFS)

Лучше выбирать каналы в категориях «no DFS», на которые не влияет активность радара.

Технология Вай Фай простыми словами

Wi-Fi – это технология беспроводной локальной сети на основе стандартов IEEE 802.11. Большинство людей используют ее для подключения к интернету мобильников, телевизоров и ноутбуков, но также данная технология применяется и в локальных сетях организаций (для подключения беспроводного принтера, например), и при построении беспроводного видеонаблюдения или домофонии, и даже в умном доме, которому и посвящен данный сайт. В общем везде, где или нет возможности протянуть кабель или устройства не поддерживают проводное подключение.

В сети Wi-Fi зачастую используется два типа устройств – точка доступа и клиенты, которые к ней подключаются. В качестве точки обычно выступает роутер, но также точкой можно сделать и смартфон или ноутбук, раздав Wi-Fi с них.

Содержание:

  1. Используемые частотные диапазоны Wi-Fi. Разница между 2.4 и 5 ГГц
  2. Частотные каналы Wi-Fi. Частоты 802.11ac и 802.11n
  3. Стандарты беспроводных сетей Wi-Fi
  4. MIMO и Beamforming

Используемые частотные диапазоны Wi-Fi. Разница между 2.4 и 5 ГГц

Что лучше 2.4 или 5 ГГц

Передача Wi-Fi сигнала осуществляется при помощи радиоволн в частотных диапазонах 2.4 ГГц и 5 ГГц. Какую частоту Wi-Fi выбрать и какая разница между 2.4 и 5 ГГц? У каждого диапазона есть свои плюсы и минусы. Сети, которые работают на 2.4 ГГц обладают большей площадью покрытия по сравнению с сетями, работающими в диапазоне 5 ГГц. Меньшая дальность покрытия на пятерке связана с тем, что волны на высоких частотах затухают сильнее, а также с большей чувствительностью сигнала к различным препятствиям, что актуально в многоквартирных домах. Казалось бы, выставляй везде 2.4 и радуйся хорошему приему в любом уголке квартиры, но не тут-то было. Большое количество сетей в данном диапазоне создают помехи друг на друга, ухудшая качество сигнала, а соответственно и скорость соединения. И сетей этих действительно много – это и точки доступа соседей, и умные лампы, розетки и выключатели, и беспроводные камеры видеонаблюдения. Bluetooth-устройства, беспроводные клавиатуры, мышки и наушники, Zigbee датчики умного дома и даже микроволновки так же работают в диапазоне частот 2.4 ГГц.

Как проверить каналы Wi-Fi на загруженность

2.4 или 5 ГГц: что лучше? Все современные роутеры уже давно работают в двух частотных диапазонах одновременно, так что если вы живете в многоквартирном доме, то лучшим решением будет перекинуть на пятерку все поддерживающие ее устройства, а недостаток покрытия решить добавлением усилителей. В моем случае пятерка отлично покрывает двухкомнатную квартиру в монолитном доме, показывая близкие к максимальной от провайдера скорости в любой ее части, так что все лампочки и прочие устройства умного дома у меня висят на 2.4 (5 ГГц они не поддерживают), а все смартфоны – на пятерке.

Для использования сетей 5 ГГц и клиент и точка доступа должны их поддерживать.

Частотные каналы Wi-Fi. Частоты 802.11ac и 802.11n

Как уже было сказано выше, большое количество работающих вокруг сетей будет создавать помехи для вашего соединения. Для минимизации таких помех роутеры могут использовать разные частотные каналы для связи с устройствами. Что это значит? Возьмем, к примеру, частотный диапазон 2.4 ГГц (устройства на 802.11n), в него входят частоты от 2400 МГц до 2483.5 МГц (в Японии до 2495 МГц). Стандартная ширина канала, которую использует роутер для связи с устройствами в данном частотном диапазоне составляет 22 МГц и таких каналов при работе в 2.4 ГГц может быть до 14 шт. Точное значение зависит от страны – для США это 11, для России и Украины – 13, а для Японии – 14. Исходя из вышесказанного, получается, что тот же айфон, купленный в штатах, будет видеть только первые 11 каналов и если ваш роутер работает на 13, то смартфон его просто не увидит. Так что если ваше устройство не видит роутер, то зайдите в его (роутера) настройки и выберите любой канал из первых одиннадцати.

С точками доступа все проще – при первом запуске зачастую предлагается выбрать страну проживания и исходя из этого и будет программно ограничено количество каналов и мощность сигнала.

Как уже было сказано выше – всего в диапазоне от 2400 МГц до 2483.5 МГц имеется 13 каналов (японский 14, находящийся за пределами данного диапазона в расчет не берем). Как они там поместились, учитывая ширину каждого в 22 МГц? Все просто – центральная частота каждого следующего канала равна +5 МГц к центральной частоте предыдущего. Для наглядности приведу картинку:

Wi-Fi количество каналов в 2.4

Как видим, каждый канал пересекается с частью других и, соответственно, создает на них помехи. Например, точка работающая на 4 канале будет оказывать сильные помехи на 3 и 5 каналы и немного меньшие на 2 и 6. А вот если ваш роутер будет работать на первом, а два соседских на шестом и одиннадцатом каналах, то все они не будут создавать друг другу помехи, т к не будет пересечения каналов. Но это в теории, на практике они все же пересекаются, т к всегда остается “неучтенка” и, расположив рядом две точки с непересекающимися каналами, они будут создавать друг другу помехи. Выглядит это следующим образом:

Непересекающиеся каналы wifi 2.4

Как бы то ни было, в любом многоквартирном доме сейчас куда больше роутеров и трех непересекающихся каналов явно недостаточно. Можно легко поймать сигнал соседа слева, справа, сверху, снизу и даже через несколько этажей. Частично решить данный вопрос можно переходом на 802.11ac, работающий на 5 ГГц (при условии, что используемые устройства поддерживают данную частоту), тут и каналов больше и загруженность меньше. А учитывая меньшую дальность действия еще и не все соседские точки добьют до вашей квартиры. В России, согласно Постановлению Правительства РФ от 12 октября 2004 года № 539 “О порядке регистрации радиоэлектронных средств и высокочастотных устройств” (с изменениями на 22 декабря 2018 года) внутри помещений разрешено использовать частотные диапазоны 5150 – 5350 МГц и 5650 – 5850 МГц, что дает 17/8/4/1 (при 20/40/80/160 МГц соответственно) непересекающихся каналов в 5 ГГц:

Непересекающиеся каналы wifi 5 ГГц

Чтобы проверить каналы Wi-Fi на загруженность и найти среди них свободные можно воспользоваться специальным приложением для смартфонов Wi-Fi Analyzer. А для того, чтобы измерить скорость Wi-Fi соединения можно воспользоваться программой SpeedTest для смартфона или их сайтом для замера на ПК.

На что влияет ширина канала Wi-Fi? Все просто – чем шире канал, тем больше скорость передачи данных, но если вокруг будет много других сетей с пересекающимися с вами каналами, то и помех будет больше. Помехи – повышение значения уровня шума и уменьшение соотношения сигнал/шум. Как итог – уменьшение реальной скорости соединения.

802.11 a/b/g/n/ac/ax скорость и год выпуска

Сети Wi-Fi описываются стандартами связи IEEE 802.11, берущими свое начало аж с 1997 года. Стандарты 802.11a и 802.11b появились в 1999 (выход первых устройств на 802.11a состоялся в 2001), 802.11g в 2003, 802.11n в 2009, 802.11ac в 2014 и 802.11ax в 2019. Немалое количество получается и что бы не запутаться во всем этом обычному пользователю, было принято решение дать стандартам альтернативные, простые для запоминания названия. Так в 2018 году и появились более удобные обозначения: 802.11n стал Wi-Fi 4, 802.11ac – Wi-Fi 5, а 802.11ax – Wi-Fi 6.

Четвертая версия (802.11n) работает в диапазонах 2.4 ГГц и 5 ГГц (при этом на 2.4 ГГц работает большинство устройств в данном стандарте) и наиболее распространена на данный момент. Максимальная теоретическая скорость 802.11n при использовании одной антенны – до 150 Мбит/с, а при использовании четырех – до 600 Мбит/с. Доступная ширина канала – 20 и 40 МГц.

Wi-Fi 5 (802.11ac), вышедший в 2013 году работает только на частоте 5 ГГц. Максимальная скорость 802.11ac при использовании восьми MU-MIMO антенн может доходить до 6,77 Гбит/с, а среди основных отличий от предыдущего стандарта можно выделить:

  • Поддержку каналов шириной 20, 40, 80 и 160 МГц.
  • Поддержку модуляции 256QAM, что дает увеличение скорости до 33% по сравнению с 64QAM, использующемся в Wi-Fi 4.
  • Поддержку до 8 пространственных потоков (Wi-Fi 4 поддерживает до 4).
  • Полноценно работающий между оборудованием разных производителей Beamforming.
  • Поддержку MU-MIMO (появилась во второй редакции стандарта 802.11ac (Wave 2)).

Последние две технологии будут рассмотрены более подробно чуть ниже.

Wi-Fi 6 (802.11ax) – последний вышедший на данный момент стандарт Wi-Fi. Количество поддерживающих его устройств все еще невелико, но оно постоянно увеличивается.

Максимальная теоретическая скорость, заявленная для Wi-Fi 6 – до 11 Гбит/с. Он работает на частотах 2.4 и 5 ГГц, поддерживает ширину канала до 160 МГц, а также в нем были внедрены новые технологии – OFDMA, модуляция 1024QAM, BSS Coloring, Target Wake Time. Подробнее про шестую версию можно почитать в статье «Wi-Fi 6 802.11ax: Target Wake Time, BSS Coloring, OFDMA«.

MIMO и Beamforming

Ну и напоследок хотелось бы рассказать про несколько технологий, применяемых в беспроводных сетях.

Что такое MIMO в роутере. SU-MIMO и MU-MIMO

MIMO – одно из самых важных нововведений стандарта Wi-Fi 802.11n. Если просто, то MIMO – это технология, позволяющая в один момент времени передавать или принимать несколько потоков данных с использованием нескольких антенн устройства. Больше потоков – выше скорость соединения.

Согласно стандарту могут быть различные конфигурации принимающих и передающих антенн, начиная с 1×1, где одна принимающая и одна передающая и заканчивая 4×4 (для 802.11n, в новых стандартах их количество увеличили еще больше). Зачастую в первой (1х1) конфигурации можно передать один пространственный поток, а в 4×4 – до четырех одновременно. Главное тут, чтобы не только роутер, но и клиент обладал соответствующим количеством антенн, а с этим могут возникнуть проблемы, так как, например, большинство смартфонов имеет MIMO 1×1. Да и указывают эти параметры далеко не все производители смартфонов и роутеров.

Отличие MIMO от MU-MIMO

Существует два варианта MIMO: однопользовательский (SU-MIMO) и многопользовательский (MU-MIMO, впервые появившейся в стандарте 802.11ac Wave 2). В первом случае роутер в один момент времени отправляет данные только одному устройству, во втором – может отправлять данные нескольким пользователям одновременно.

Beamforming

Beamforming что это в роутере

Beamforming – технология формирования направленного луча в сторону подключенного клиента. Обычно сигнал транслируется во все стороны, создавая равномерную зону покрытия. Технология Beamforming позволяет маршрутизатору определить нахождение клиента в пространстве и сформировать сигнал в данном направлении. Изначально данный функционал появился в стандарте 802.11n, но из-за отсутствия стандартного способа реализации каждый производитель реализовывал ее по-своему и нормально она не работала. Начиная с 802.11ac был введен стандартный способ формирования диаграммы направленности, что позволило любым устройствам с поддержкой данной технологии корректно работать с любыми другими устройствами, так же ее поддерживающими.

Содержание

  • Что такое диапазон точки доступа
  • На каких частотах работает вайфай и чем они отличаются
  • Чем отличаются частоты Wi-Fi
    • 2,4 ГГц
    • 5 ГГц
    • Что нужно знать о диапазоне 5 ГГц?
  • Как узнать, какие частоты поддерживает роутер
  • Как выбрать оптимальный диапазон частот Wi-Fi

Беспроводные сети с каждым годом становятся всё стабильнее и быстрее. Пожалуй, именно по Wi-Fi сегодня подключено к интернету наибольшее количество пользовательских девайсов. Да и большая часть LAN организована при помощи вайфая.

Однако сеть сети рознь. В данном обзоре объясним, почему так.

Что такое диапазон точки доступа

Работа Wi-Fi-сетей основана на технологии передачи цифровых потоков информации через радиоканалы. Обратившись к школьному курсу физики, можно узнать (или вспомнить), что основными характеристиками электромагнитной волны являются:

  • Длина — расстояние по горизонтали между двумя самыми высокими или низкими точками.
  • Амплитуда — максимальная разбежка между значениями периодически изменяющейся величины. Можно назвать «размахом» волны. Отсчитывается от нулевого (среднего) значения. Является половиной высоты.
  • Скорость распространения — расстояние, которое преодолевает волна за единицу времени.
  • Частота — количество полных циклов/колебаний волны за единицу времени.

Примечание: радиоволна — тип электромагнитной волны.

Характеристики так или иначе взаимосвязаны. Рабочий диапазон точки доступа — это полоса частот, генерируемая устройством в конкретных пределах по амплитуде. Скорость распространения зависит от длины волны и её частоты. Скорость же передачи данных и максимальное расстояние зависят, пожалуй, от всего сразу.

Звучит довольно общо, поэтому разберёмся на конкретных примерах.

На каких частотах работает вайфай и чем они отличаются

Сегодня существует две частоты Wi-Fi — 2,4 ГГц и 5 ГГц. 2,4 ГГц охватывает диапазон от 2412 до 2472 МГц, а 5 ГГц — от 5160 до 5825 МГц.

Наиболее свежая версия стандарта, Wi-Fi 6E, уже поддерживает работу на 6 ГГц (от 5955 до 7115 МГц). Но полноценное внедрение 6-гигагерцовых сетей должно произойти с релизом нового стандарта — Wi-Fi 7. Предварительно в конце 2023 или в начале 2024 года. Достоверной информации о 6-гигагерцовом Wi-Fi на данный момент не очень много. По сути, известно лишь то, что сети будут намного стабильнее, быстрее и функциональнее.

В этой статье сделаем акцент на 2,4 и 5 ГГц.

Чем отличаются частоты Wi-Fi

2,4 ГГц

Данная частота разделена на 14 каналов с шириной каждого 20 МГц. Фактически роутеры могут работать на 13 каналах, а также использовать расширенные 40-мегагерцовые.

Есть пересекающиеся и непересекающиеся каналы. В контексте частоты 2,4 ГГц непересекающимися являются 1, 6 и 11 при ширине 20 МГц или 3 и 11 при ширине 40 МГц.

Почему стоит знать о непересекающихся каналах? Всё максимально просто: чем меньше устройств использует конкретный или «соседствующий» канал, тем стабильнее работает Wi-Fi. Можно поговорить с соседями и распределить непересекающиеся каналы, чтобы ваши сети не мешали друг другу.

Примечание: увеличенная ширина канала приводит к тому, что используемый вами канал дополнительно будет пересекаться ещё с несколькими — это плохо для стабильности сети. Если же в радиусе действия вашего роутера других маршрутизаторов нет, то можно использовать 40-мегагерцовые каналы. Они более скоростные, нежели 20-мегагерцовые.

Что касается других особенностей 2,4-гигагерцовых сетей, то:

  • Такие сети медленнее, чем 5-гигагерцовые. Пропускная способность — до 600 Мбит/с.
  • Они имеют увеличенный эффективный радиус и, соответственно, повышенную стабильность на больших расстояниях. 2,4-гигагерцовая сеть может «бить» на 50–150 метров. Однако всё зависит от конфигурации помещения/местности, мощности передатчика, технических характеристик антенн и даже ПО маршрутизатора.
  • Они менее подвержены затуханию при прохождении преград (стен, окон, дыма, пара и т. д.).
  • Более подвержены воздействию помех. Дело в том, что на частоте 2,4 ГГц работают СВЧ-печи, радио- и видеоняни, системы удалённого управления камерами видеонаблюдения и гаражными воротами, беспроводная компьютерная периферия (мыши, клавиатуры, наушники).

5 ГГц

5-гигагерцовые сети устроены сложнее. В России доступны 33 канала, 19 из которых являются непересекающимися. Но есть некоторые нюансы.

  • 19 непересекающихся каналов — при ширине 20 МГц.
  • Помимо ширины 20 МГц, можно выбрать 40, 80 и даже 160 МГц.
  • Ширина 160 МГц доступна для стандартов начиная с 802.11ac. Занимает весь блок каналов, с 36-го по 64-й. Но многие устройства до сих пор не поддерживают данную ширину, поэтому лучше использовать 20/40/80 МГц.
  • Узкий канал (20 МГц) — 144-й. Если устройство не может работать на этом канале, то ему не удастся обнаружить 40/80-мегагерцовые блоки, в которые включён 144-й канал. Соответственно, девайсы с поддержкой старых спецификаций смогут использовать 20-мегагерцовую ширину для каналов 132, 136 и 140, а 40-мегагерцовую — для блока 132–136.

Что нужно знать о диапазоне 5 ГГц?

  • Сигнал не любит препятствия. Кирпичная стена для него — серьёзная преграда.
  • Дальность распространения сигнала — 10–50 метров. Как правило, в обычной квартире — 10–15 метров. На фактическую дальность влияют те же факторы, что и в случае 2,4-гигагерцовых сетей.
  • Из-за низкой «проникающей способности» сигнала вероятность пересечения зон покрытия вашего и соседских роутеров практически исключена.
  • Максимальная скорость — до нескольких Гбит/с. Например, на International Consumer Electronics Show 2018 были показаны устройства с пропускной способностью 11 Гбит/с. Однако сегодня потребительскую электронику с такими характеристиками найти не удастся. Да и необходимости в ней нет. 

Примечание: на скорость передачи данных, стабильность соединения и перечень доступных каналов влияет стандарт связи. При выборе версии технологии в настройках маршрутизатора обратите внимание на стандарты, поддерживаемые устройствами-клиентами (можно посмотреть в пользовательской документации или на маркетплейсах). Лучший на сегодня — 802.11ax (Wi-Fi 6/6E). Однако если девайсы-клиенты его не поддерживают, то используйте более старые версии. Например, 802.11ac (Wi-Fi 5) или 802.11n (Wi-Fi 4).

Как узнать, какие частоты поддерживает роутер

Чтобы узнать, на каких частотах может работать маршрутизатор, стоит обратиться:

  • К пользовательской документации. Эта информация обязательно будет указана в технических характеристиках устройства.
  • К официальному сайту производителя или популярному маркетплейсу. Информация также указывается в разделе ТХ.
  • К веб-конфигуратору. Частота 2,4 ГГц поддерживается по умолчанию. Однако если в веб-интерфейсе роутера можно настроить 5-гигагерцовую точку доступа, значит, частотный диапазон поддерживается.

Как выбрать оптимальный диапазон частот Wi-Fi

Мы разобрались, что идеального частотного диапазона Wi-Fi не существует. Во всяком случае, пока. Поэтому если роутер поддерживает работу на двух частотах одновременно, создайте и настройте две сети (точки доступа).

Зачем это делать?

  • Устройства, расположенные далеко от маршрутизатора, можно подключить к 2,4-гигагерцовой сети. Будет стабильный и качественный сигнал. По поводу сравнительно невысокой пропускной способности можно не переживать, поскольку интернет-провайдеры редко предлагают скорости выше 500 Мбит/с. Если же у вас гигабитный интернет, то переместите роутер ближе к устройствам-клиентам и подключите их к 5-гигагерцовой сети. Или же используйте кабельное соединение.
  • Вы сможете переключаться между дальнобойной и скоростной сетью ситуативно. Нужно отойти с мобильным устройством — переключитесь на 2,4 ГГц. Нужны высокие скорости — переключитесь на 5 ГГц.
  • Появится возможность разгрузить определённую сеть. Как правило, чем больше устройств-клиентов подключено к конкретной точке доступа, тем хуже она работает. Распределение нагрузки между хот-спотами на разных частотных диапазонах иногда позволяет повысить их производительность.

Время на прочтение
9 мин

Количество просмотров 264K

2,4 ГГц — это плохо. 5 ГГц — это хорошо. 6 ГГц — это ещё лучше, но послезавтра. Все это знают, кого я тут учу, в самом деле. Всё это хорошо, только делать-то что, когда ты такой, как умный, открываешь какой-нибудь Wi-Fi Explorer, а там сатанизм и этажерки, как на скриншоте?

Шаг первый — поплакать. Шаг второй — нырнуть под кат. Вопрос простой, а ответ — нет.

Для начала — разминочный тест. Ситуация номер раз: занят один канал в 2.4 ГГц, нужно поставить свою точку доступа. На какой канал?

  1. На любой, кроме того же самого;
  2. Плюс-минус пять каналов от занятого, то есть, шестой и дальше;
  3. Лучше, конечно, на шестой или одиннадцатый;
  4. На тот же самый канал.

Ситуация вторая: диапазон 2,4 ГГц занят двумя точками доступа: одна вещает на первом канале с шириной 40 МГц, вторая — на девятом в такой же ширине. Куда нам встать со своей точкой доступа?

  1. На любой канал, кроме первого или девятого, очевидно же;
  2. Желательно на тринадцатый, чтобы как можно дальше от этих двух;
  3. На первый, пятый, девятый или двенадцатый;
  4. На первый или девятый.

Ситуация под цифрой три, тут похитрее задачка: в эфире три точки доступа, по 20 МГц на первом, шестом и одиннадцатом канале (“во-первых, это красиво”). Куда поставить свою точку доступа?

  1. На любой канал, кроме первого, шестого и одиннадцатого;
  2. На первый, шестой или одиннадцатый — наверное, лучше на первый, потому что мощность пониже;
  3. На первый, шестой или одиннадцатый — может, есть ещё какая-то характеристика, на которую надо посмотреть?
  4. Третий-четвёртый или восьмой-девятый, что-то из этого, потому что там пустые места есть.

Ситуация 4: Этажерка Безнадёжности. Куда поставить точку доступа?

  1. На каналах с девятого и дальше мощность ниже всех остальных, так что надо ставить туда;
  2. Меньше всего точек доступа на 13 канале, так что на него;
  3. Всё настолько плохо, что уже без разницы. На любой наугад.

Про 5 ГГц я не говорю по той простой причине, что там всё примерно то же самое, но не совсем, а, как всегда в вайфае, всё зависит от всего. Основные принципы выбора там будут примерно те же самые, только кое-что будет полегче, а другое кое-что — посложнее. Но это, как говорил Каневский, уже совсем другая история.

Если вы быстро и без запинки ответили на этот стартовый тест, то поздравляю: либо вы узнаете много нового из этой статьи, либо не узнаете ничего. Правильные ответы —

Вот такие:

Ситуация 1 — любой из ответов лучше варианта 1, но вариант 3 приличнее и вежливее всего;
Ситуация 2 — вариант 4;
Ситуация 3 — варианты 2 или 3, причём вариант 3 лучше;
Ситуация 4 — вариант 3, он же “против всех”.

Для того, чтобы понять принцип, по которым более правильно так, а не по-другому, нам нужно обсудить на пальцах, как сети Wi-Fi дружат друг с другом — если бы это сосуществование было серьезной проблемой, Wi-Fi не торчал бы в каждой кофеварке. Как мы уже выяснили в предыдущей моей заметке, основная цель протокола 802.11 — не обеспечение максимально возможной пропускной способности на один мегагерц занятого эфира, а бескомпромиссная совместимость и работоспособность протокола даже в самых плохих условиях (типа заглавной картинки, да). Придуман протокол грамотно, реализован, кхм, по-разному, но в целом тоже не глупо, и всё-таки рано или поздно всякий запас прочности познаёт свой предел.

Итак, представим, что в мире остались всего два устройства, которые умеют работать с Wi-Fi, и это точка доступа и клиент. Первое правило вайфай —

никому не расска

“Пока говорит один — остальные молчат”. И не просто молчат, а внимательно слушают.

Собираясь передать данные, первое, что делает любое устройство Wi-Fi — внимательно слушает, не передаёт ли кто свои данные. Получится очень неловко, если мы начнём говорить одновременно с кем-то ещё, не так ли? В отличие от 802.3, он же Ethernet (слишком обобщённо, но пусть будет), в котором момент одновременного разговора определяют, когда он произошёл (помните лампочку Collision на старых хабах? Я тоже нет, но речь о ней), в 802.11 стараются такого момента избежать и не допустить. Главная причина в том, что разница между передаваемым и принимаемым сигналом в вайфае может достигать МИЛЛИАРДА раз (я не шучу!), и то, что передаёт передатчик, может наглухо забить и сжечь приёмник, если он попробует слушать одновременно с передачей. Весь этот этикет взаимного “После Вас — нет, после Вас!” среди устройств 802.11 называется сложной аббревиатурой CSMA/CA, которая делится на три части:

CS — Carrier Sense, определение несущей;
MA — Multiple Access, множественный доступ;
CA — Collision Avoidance, избежание коллизий.

У меня шевелится паучье чутьё на тему того, что вы всю эту лирику уже не раз читали, но потерпите чуть-чуть, сейчас мы доберёмся до мясца нашей задачи о расстановке козы, волка и капусты. В рамках этой заметки нас интересуют первые две буквы, а именно CS. Что это вообще такое?

Так вот, определение несущей — это, по сути, и есть механизм определения, говорит ли сейчас кто-то ещё или нет. Всё сводится к тому, что практически постоянно проверяется наличие двух возможных причин занятости эфира — Wi-Fi-устройства и все остальные устройства (да, вот так вот ксенофобовато, “наши и все остальные” — двадцать с лишним лет протоколу, а актуальности, как видите, не теряет!). Перед тем, как только подумать о передаче данных, устройству нужно провести оценку занятости эфира (натурально, так и называется — Clear Channel Assesment, или CCA). “Наши” и “не наши”, по мнению каждого устройства, не равны по значимости, и есть два пороговых значения — это SD (Signal Detect), которое означает, что мы услышали что-то на языке 802.11, и ED (Energy Detect), которое означает любую мощность на входе приёмника (любой другой язык).

А теперь внимание: к “нашим” вайфай-устройства в СТО раз более внимательны, чем к “всем остальным”. То есть, эфир считается занятым, если мы услышали какой-то 802.11-фрейм на уровне всего на 4 дБ лучше уровня шума — мы ооооочень вежливы к другим устройствам Wi-Fi! А все остальные (всякие там Bluetooth, к примеру) помешают что-то передать только тогда, когда уровень сигнала от них будет выше шума на 24 дБ!


Спасибо замечательному David Coleman за эту красивую картинку.

Много это или мало? Давайте приведём самые хрестоматийные числа в качестве примера. Итак, для того, чтобы устройства стандарта 802.11n развили максимальные скорости (при ширине канала в 20 МГц и одном приёмопередатчике это 72,2 Мб/с), им нужен сигнал уровнем примерно -64 дБм при соотношении “сигнал/шум” не меньше 25 дБ (если кому интересно, откуда я взял эти числа — то вот отсюда, пользуйтесь, если до сих пор не заглядывали в статью skhomm «Все полезные материалы по Wi-Fi в одном месте»). То есть, передачу данных остановит ЛЮБОЙ кадр на этом же канале с уровнем приёма выше -85 дБм! В каком-нибудь многоквартирном доме это добрые плюс-минус два этажа (я терпеть не могу оценивать мощность длиной, но в этом случае готов согрешить ради наглядности), а в чистом поле — полкилометра расстояния!

А вот если наше готовое к передаче устройство услышит какой-то сигнал, но не сможет его расшифровать, то оно будет его игнорировать вплоть до -65 дБм, то есть, до тех пор, пока уровень этой сторонней помехи почти не сравняется с уровнем сигнала от той самой идеальной точки доступа, на которую оно и хотело передать данные. Вот это да!

“Но позвольте” — совершенно правильно возразит кто-нибудь моими же собственными пальцами, — “мы же все знаем, что блютус мешает вайфаю, как ему мешают микроволновки, камеры там всякие!”. Совершенно верно. При уровне “нечитаемой” помехи в, скажем, -70 дБм (ну, то есть, она ещё не считается достаточно сильной для того, чтобы остановить всю передачу и заставить считать среду занятой) она становится тем самым шумом, от которого мы соотношение “сигнал/шум” и отсчитываем. Мы слышим нашу точку доступа на уровне -65 дБм, мы слышим любой нечитаемый сигнал на уровне -70 дБм, таким образом, наше соотношение “сигнал-шум” вдруг упало до 5 дБ, а при таких параметрах канальную скорость в 72,2 Мб/с уже не развить, а максимум, что можно развить — это несчастные 27 Мб/с. Все в радиусе действия этой помехи резко уронили свои канальные скорости, в итоге за секунду трафика через точку доступа можно прокачать существенно меньше — вот и начались “тормоза в вайфае”, ай-ай-ай, всё плохо, колёсико крутится, ютьюб не грузится. Так-то!

“Какое же отношение” — последует новый логичный вопрос от внимательного идеализированного мной читателя, — “какой-то там блютус имеет к нашему вопросу? Ведь на картинках в тесте нет никакого блютуса, там только вайфай!”. А вот какое: любое 802.11-устройство может декодировать фрейм только тогда, когда он передан ПОЛНОСТЬЮ на канале, который она слушает! Посмотрите на эти две сети:

Точка доступа, работающая на первом канале, в упор не понимает, что говорит вторая точка доступа, потому что слышит только 75% того, что она передаёт (как и точка на втором канале, которая слышит только 75% того, что говорит первая). Именно поэтому она не понимает, что это “наши” — она не считает, что должна уступить среду для передачи! Отсюда соотношение “сигнал/шум” катится вниз, канальная скорость (а с ней и итоговая пропускная способность) катятся вниз, и, заметьте, совсем даже не пропорционально перекрытию каналов, а обратно пропорционально разнице в мощности — чем лучше клиент, который хочет передать данные первой точке, слышит вторую, тем сильнее упадёт его канальная скорость.

Но и это, к сожалению, ещё не все причины разрушительного действия перекрывающихся каналов. Теперь мы обратимся к следующим двум буквам, а именно MA, или Multiple Access. Мы не будем углубляться в детали доступа к среде в протоколах 802.11 — я отмечу только одну особенность, которая важна в контексте обсуждаемого вопроса. Итак, после каждого фрейма, неважно, служебный он или содержит данные, любое Wi-Fi устройство должно выждать некоторое время, прежде чем снова пытаться получить доступ к среде. Более того, неважно, само ли оно отправило этот фрейм или только услышало его — придётся подождать определённое время, называемое InterFrame Space (IFS), и только потом затевать игру “Кто первый застолбит среду”. Этих самых IFS существует несколько, и вот что интересно: если наше устройство после передачи фрейма не услышало подтверждения, что адресат его получил, то оно будет ждать дольше, чем если бы получило. В разы дольше.

Вернёмся к картинке из позапрошлого абзаца. Точка доступа с первого канала принимает фрейм. В это время точка доступа со второго канала тоже принимает фрейм. Оба этих фрейма повреждаются, и обе сети вынуждены простаивать бОльшее время, ещё сильнее теряя в пропускной способности (потому что, как мы помним, время = деньги, а для вайфая время = пропускная способность). Полная засада.

Итак, из всего этого следует простое правило: если не можете избежать пересечения каналов — ставьте точки доступа на один канал! Да, обе сети потеряют в пропускной способности, но, во всяком случае, они рассчитаны на такую работу.

Я напомню ситуацию 4.

Скрытый текст

В эфире не осталось ни одного канала, на котором не работает две и больше пересекающихся и мешающих друг другу сети, все мешают друг другу, все испытывают проблемы, поэтому ни мощность, ни выбор канала, ни волшебные алгоритмы, ни BSS Coloring, ни крёстная фея в такой ситуации уже не помогут. Можно ставить свою точку доступа куда угодно.

Понятное дело, что в таком беспроводном адке уже ничего не исправить, но что нужно делать, чтобы не оказаться в такой ситуации? В первую очередь, запомнить раз и навсегда, что есть всего три не мешающих друг другу канала в диапазоне 2,4 ГГц — первый, шестой и одиннадцатый. Конечно, можно заметить, что третий, восьмой и тринадцатый тоже друг другу не мешают, но, во-первых, тринадцатый можно не везде (в США всего 11 каналов), а во-вторых, если вы отклонитесь от мантры “1-6-11”, а кто-то другой не отклонится, то весь эффект сойдёт на нет — все каналы снова пересекутся и испортят друг другу жизнь. Это как обжимать витую пару — в принципе, если с двух сторон последовательность одинаковая, то может и заработать, только вот разбираться кому-то потом в распиновке каждой розетки будет ох как несладко. Ещё раз: первый. Шестой. Одиннадцатый.

Хорошо, вот ситуация под номером 3.

Скрытый текст

Ну хорошо, вот они, первый, шестой или одиннадцатый. Какой из них выбрать? Да, в принципе, любой из этих трёх подходит, но если выбирать до конца оптимально — то нам гораздо важнее, как часто передаются данные на каждом из этих каналов; то есть, идеальный ответ — смотреть на ещё один параметр, а именно утилизацию эфира. Это просто: если к точке доступа на первом канале подключено 100 клиентов, а к точкам на 6 и 11 — ни одного, то гораздо выгоднее встать на 6 или 11. В англоязычной терминологии есть два слова — airtime и utilization, и они означают, строго говоря, не одно и то же, но можно ориентироваться как на одно, так и на другое, показометры эти взаимозависимые.

Теперь — ситуация 2.

Скрытый текст

Мы уже поняли, что пересекать каналы нельзя, поэтому варианты с 13 и любым каналом отпадают. Почему же нельзя поставить точку доступа на пятый канал?

Причина — в истории. Нет, серьёзно. Каналы шире 20 МГц появились только в стандарте 802.11n, когда впервые предложили слепить воедино два соседних канала и говорить по ним в два раза — эээээээ… толще? В два раза продуктивнее! Но с точки зрения совместимости вся служебная информация, то есть, все фреймы, которые должны быть понятными для остальных сетей, идёт только в основных 20 МГц занятой полосы. Я напомню вот эту классную картинку с анатомией передачи данных по Wi-Fi, она всегда к месту:

Обратите внимание: только синяя часть на диаграмме использует все 40 МГц эфира! Все “шестерёнки” протокола крутятся в основных двадцати мегагерцах! Это, кстати, верно и для 80 МГц, доступных в 802.11ac: всё служебное летит в первой двадцатке, а оставшиеся 60 простаивают бОльшую часть времени. Ладно, почти всё, рано или поздно к вопросу широких каналов мы вернёмся — оооо, я обещаю, мы их ещё обсудим!

И в итоге получается, что пятый канал, хоть и попадает целиком внутрь одной сети, всё равно видеть её не будет — со всеми описанными вытекающими (кхм, какая двусмысленная фраза). Для нормальной работы нам остаются лишь первый и девятый каналы. Как определить номер основного канала? Очень просто — он будет написан в свойствах сети, когда вы посмотрите на неё с помощью любого приложения-сканера сетей:

Номер primary-канала и есть тот номер, который важен для нас.

Ну, и первая ситуация теперь вообще не вызывает вопросов, правда?

Скрытый текст

Тезисно сформулируем всё, что мы смогли обсудить в таком сложном ответе на такой простой вопрос:

  • Можно работать на одном канале, но никогда не нужно каналы пересекать;
  • Нам нужны первые 20 МГц канала, остальное по-прежнему нельзя пересекать;
  • (стройный хор): Первый! Шестой! Одиннадцатый!

Пользуясь случаем, передаю привет МГТС, которые в своё время прославились тем, что ставили все домашние роутеры абонентам на шестой канал. Пожалуй, это не самое тупиковое решение, как могло бы показаться на первый взгляд.

  • Что такое канал на вай фай роутере
  • Что такое вторичное подключение в роутере что это
  • Что такое канал в роутере zyxel
  • Что такое встроенная точка доступа в роутере
  • Что такое канал в вайфай роутере